

Nota Metodológica Processos Industriais e Uso de Produtos

Coordenação Técnica

Instituto de Energia e Meio Ambiente

Equipe Responsável

André Luís Ferreira

David Shiling Tsai

Marcelo dos Santos Cremer

Revisão

Shigueo Watanabe Jr.

Dezembro de 2014

Atualização em 23/11/2015

Índice

1.	Intr	odução	6
	1.1	Emissões de gases de efeito estufa associadas à atividade industrial	6
	1.2	Escopo e estruturação da estimativa de emissões de Processos Industriais e Uso de	
	Produ	tos	6
2.	Mét	todo de Cálculo	10
	2.1	Produção de Metais	10
	2.1.	1 Produção de ferro-gusa e aço	10
	2.1.	2 Produção de alumínio	13
	2.1.	3 Produção de magnésio	15
	2.1.	4 Produção de ferroligas e de outros metais não-ferrosos	16
	2.2	Produtos Minerais	17
	2.2.	1 Produção de cimento	17
	2.2.	2 Produção de cal	19
	2.2.	3 Produção de vidro	21
	2.2.	4 Consumo de barrilha	23
	2.3	Indústria Química	23
	2.3.	1 Produção de amônia	25
	2.3.	2 Produção de ácido nítrico	26
	2.3.	3 Produção de ácido adípico	27
	2.3.	4 Produção de caprolactama	27
	2.3.	5 Produção de carbureto de cálcio	28
	2.3.	6 Produção de metanol	28
	2.3.	7 Produção de etileno	28
	2.3.	8 Produção de dicloroetano e cloreto de vinila	29
	2.3.	9 Produção de óxido de eteno	29
	2.3.	10 Produção de acrilonitrila	30
	2.3.	11 Produção de coque de petróleo calcinado	30
	2.3.	12 Produção de negro-de-fumo	31
	2.3.	13 Produção de ácido fosfórico	31
	2.3.	14 Produção de outros produtos químicos	31
	2.4	Emissões de HFCs	32
	2.4.	1 Produção de halocarbonos	32

2.4	2 Consumo de halocarbonos	33
2.5	Uso de SF ₆ em equipamentos elétricos	35
2.6	Uso não energético de combustíveis e uso de solventes	36
3. Dife	erenças do SEEG 2015 em relação ao SEEG 2014	38
4. Qua	alidade dos dados	39
5. Res	ultados	43
Referênc	cias bibliográficas	51
ANEXO A	A – Produção de metais: dados necessários para as estimativas de emissões	53
ANEXO E	3 – Produção física de cimento	56
ANEXO (C – Produção física de cal e vidro	58
ANEXO [O – Produção, importação, exportação e consumo de barrilha	59
ANEXO E	E – Produção física de substâncias químicas	60
ANEXO F	– Capacidade instalada de produção de substâncias químicas	62
ANEXO (G – Consumo Não Energético de Combustíveis	63

Lista de Figuras

Figura 1: Estruturação da estimativa de emissões segundo agrupamentos sugeridos pelo IPCC, tip	os
de processos industriais ou uso de produtos, tipos de produtos, insumos e gases emitidos	8
Figura 2: Representação simplificada da produção de ferro-gusa e de aço e dos processos que ger	am
emissões	10
Figura 3: Produção de alumínio metálico e processos que geram emissões	14
Figura 4: Produção de cimento e processos que geram emissões	18
Figura 5: Produção de cal e processos que geram emissões	20
Figura 6: Produção de vidro e processos que geram emissões	22
Lista de Tabelas	
Tabela 1: Composição química e fatores de emissão dos tipos de cal	21
Tabela 2: Substâncias químicas e GEEs emitidos em seus processos de produção	24
Tabela 3: Fontes de informação da produção física de substâncias químicas	25
Tabela 4: Quadro de Qualidade das estimativas nacionais em 2014	40
Tabela 5: Quadro de Qualidade das estimativas nacionais entre 1970 e 2014	41
Tabela 6: Quadro de Qualidade dos Dados de Alocação nas UFs em 2014	42
Tabela 7: Emissões nacionais de CO ₂ e (GWP) por atividade (ktCO ₂ e)	43
Tabela 8: Emissões nacionais por tipo de gás (t)	44
Tabela 9: Emissões nacionais de CO₂e (GWP) por tipo de gás (ktCO₂e)	44
Tabela 10: Emissões nacionais de CO ₂ e (GWP) alocadas por UF (ktCO ₂ e)	
Tabela 11: Emissões nacionais de CO₂e (GWP) por atividade em 2014 alocadas por UF (ktCO₂e)	45
Tabela 12: Emissões de CO₂e (GWP) na Produção de Cimento alocadas por UF (ktCO₂e)	46
Tabela 13: Emissões de CO₂e (GWP) na Produção de Alumínio alocadas por UF (ktCO₂e)	46
Tabela 14: Emissões de CO₂e (GWP) na Indústria Química alocadas por UF (ktCO₂e)	46
Tabela 15: Emissões de CO₂e (GWP) na Produção de Magnésio alocadas por UF (ktCO₂e)	47
Tabela 16: Emissões de CO ₂ e (GWP) na Produção de Ferro-gusa e Aço alocadas por UF (ktCO ₂ e)	47
Tabela 17: Emissões de CO₂e (GWP) na Produção de Ferroligas alocadas por UF (ktCO₂e)	47
Tabela 18: Emissões de CO ₂ e (GWP) alocadas nas UFs - Alagoas (ktCO ₂ e)	47
Tabela 19: Emissões de CO ₂ e (GWP) alocadas nas UFs - Amazonas (ktCO ₂ e)	47
Tabela 20: Emissões de CO ₂ e (GWP) alocadas nas UFs - Bahia (ktCO ₂ e)	47
Tabela 21: Emissões de CO ₂ e (GWP) alocadas nas UFs - Ceará (ktCO ₂ e)	47
Tabela 22: Emissões de CO₂e (GWP) alocadas nas UFs – Distrito Federal (ktCO₂e)	48
Tabela 23: Emissões de CO ₂ e (GWP) alocadas nas UFs – Espírito Santo (ktCO ₂ e)	48
Tabela 24: Emissões de CO ₂ e (GWP) alocadas nas UFs – Goiás (ktCO ₂ e)	48
Tabela 25: Emissões de CO ₂ e (GWP) alocadas nas UFs – Maranhão (ktCO ₂ e)	48
Tabela 26: Emissões de CO ₂ e (GWP) alocadas nas UFs – Minas Gerais (ktCO ₂ e)	48
Tabela 27: Emissões de CO ₂ e (GWP) alocadas nas UFs – Mato Grosso do Sul (ktCO ₂ e)	48
Tabela 28: Emissões de CO ₂ e (GWP) alocadas nas UFs – Mato Grosso (ktCO ₂ e)	48
Tabela 29: Emissões de CO ₂ e (GWP) alocadas nas UFs – Pará (ktCO ₂ e)	49
Tabela 30: Emissões de CO₂e (GWP) alocadas nas UFs – Paraíba (ktCO₂e)	49
Tabela 31: Emissões de CO ₂ e (GWP) alocadas nas UFs – Pernambuco (ktCO ₂ e)	49

Tabela 32: Emissões de CO₂e (GWP) alocadas nas UFs – Piauí (ktCO₂e)	49
Tabela 33: Emissões de CO₂e (GWP) alocadas nas UFs – Paraná (ktCO₂e)	49
Tabela 34: Emissões de CO₂e (GWP) alocadas nas UFs – Rio de Janeiro (ktCO₂e)	49
Tabela 35: Emissões de CO₂e (GWP) alocadas nas UFs – Rio Grande do Norte (ktCO₂e)	49
Tabela 36: Emissões de CO₂e (GWP) alocadas nas UFs – Rondônia (ktCO₂e)	49
Tabela 37: Emissões de CO₂e (GWP) alocadas nas UFs – Rio Grande do Sul (ktCO₂e)	50
Tabela 38: Emissões de CO₂e (GWP) alocadas nas UFs – Santa Catarina (ktCO₂e)	50
Tabela 39: Emissões de CO₂e (GWP) alocadas nas UFs – Sergipe (ktCO₂e)	50
Tabela 40: Emissões de CO₂e (GWP) alocadas nas UFs – São Paulo (ktCO₂e)	50
Tabela 41: Emissões de ${ m CO_2}$ e (GWP) alocadas nas UFs – Tocantins (kt ${ m CO_2}$ e)	50
Tabela 42: Produção física de aço, alumínio e magnésio em t	53
Tabela 43: Consumo de combustíveis redutores em ktep	54
Tabela 44: Fatores de emissão de combustíveis redutores	55
Tabela 45: Consumo de carbonatos como fundentes em altos-fornos da produção de ferro-gu	ısa e
aço em toneladas	55
Tabela 46: Produção física de cimento em kt	56
Tabela 47: Produção física de cimento em kt (continuação)	57
Tabela 48: Produção física de cal por tipo e de vidro virgem em kt	58
Tabela 49: Dados de atividade utilizados nas estimativas de emissões do consumo de barrilha	em t59
Tabela 50: Produção física em kt por tipo de substância química	60
Tabela 51: Produção física em kt por tipo de substância química (continuação)	61
Tabela 52: Capacidade Instalada de Amônia por UF em toneladas	62
Tabela 53: Capacidade Instalada de Ácido Nítrico por UF em toneladas	62
Tabela 54: Consumo Não Energético de Combustíveis em Outros Setores que não Matéria-pr	ima da
Indústria Química (ktep)	63
Lista de Gráficos	
Gráfico 1: Evolução das emissões de HFC-32 e tendência estimada	33
Gráfico 2: Evolução das emissões de HFC-125 e tendência estimada	34
Gráfico 3: Evolução das emissões de HFC-134a e tendência estimada	34
Gráfico 4: Evolução das emissões de HFC-143a e tendência estimada	35
Gráfico 5: Estimativas das emissões de SE, em equinamentos elétricos	36

1. Introdução

1.1 Emissões de gases de efeito estufa associadas à atividade industrial

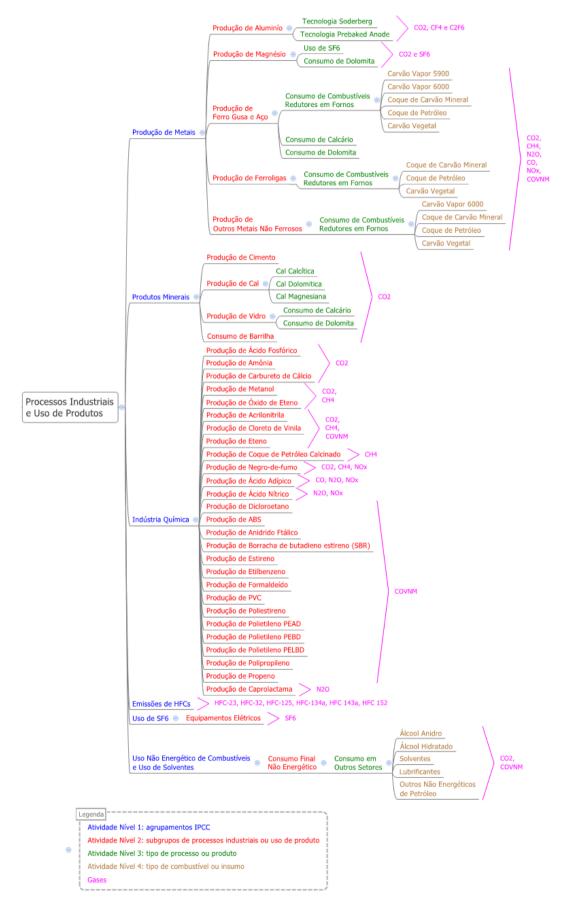
As atividades industriais podem gerar emissões atmosféricas pela queima de combustíveis (geração de calor ou energia elétrica), pela disposição de resíduos (tratamento de efluentes industriais e incineração de resíduos) e por processos de transformação química e/ou física de materiais.

Para cada um desses três tipos de processos, as emissões ocorrem sob uma grande variedade de especificidades, dentre elas: o produto em produção, os insumos que alimentam os processos, o tipo de rota tecnológica utilizado na produção, os equipamentos da planta industrial e os níveis de eficiência.

1.2 Escopo e estruturação da estimativa de emissões de Processos Industriais e Uso de Produtos

O SEEG adota as recomendações do Painel Intergovernamental sobre Mudanças Climáticas (IPCC), onde as estimativas da categoria "Processos Industriais e Uso de Produtos" levam em conta exclusivamente as emissões ocorridas nas transformações químicas ou físicas de materiais. Assim, as emissões por queima de combustíveis são estimadas no "Setor de Energia", e as emissões pela disposição de resíduos, no "Setor de Resíduos" do SEEG.

Este trabalho tomou como base os relatórios de referência preparados para o Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa, a ser publicado pelo Ministério de Ciência, Tecnologia e Inovação. No momento do desenvolvimento do presente trabalho, tais relatórios apresentavam-se em suas versões para consulta pública. De tal modo, as estimativas foram realizadas conforme os seguintes agrupamentos:


- Produção de metais: produção de ferro-gusa e aço, ferroligas, alumínio, magnésio e outros metais não-ferrosos;¹
- Produtos minerais: produção de cal, cimento e vidro e consumo de barrilha;
- Indústria química: produção de ácido adípico, ácido fosfórico, ácido nítrico, acrilonitrila, amônia, caprolactama, carbureto de cálcio, cloreto de vinila, eteno, metanol, negro-de-fumo, óxido de eteno, coque de petróleo calcinado e outros petroquímicos;
- Emissões de hidrofluorcarbonos (HFCs);
- Uso de hexafluoreto de enxofre (SF₆) em equipamentos elétricos;
- Uso não energético de combustíveis e uso de solventes.

A Figura 1 apresenta a árvore estrutural da estimativa de emissões por Processos Industriais e Uso de Produtos, contendo os agrupamentos de atividade industrial, os tipos de processos industriais ou uso de produtos, os tipos de produtos, insumos e os gases emitidos. Os gases

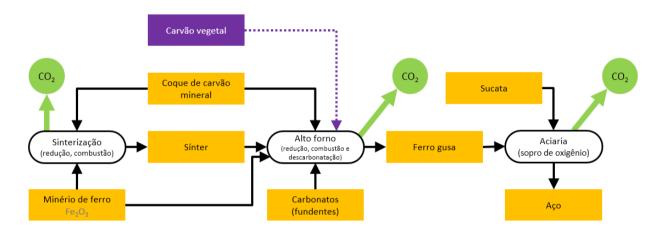
¹ Apesar das emissões relacionadas ao consumo de carbonatos como fundentes em altos-fornos e a produção de magnésio serem reportadas pela Comunicação Nacional na categoria "Produtos Minerais", optou-se por alocá-las em "Produção de Metais" conforme apresentado nas *Guidelines 2006* do IPCC.

inventariados são dióxido de carbono (CO_2), metano (CH_4), óxido nitroso (N_2O), monóxido de carbono (CO), compostos orgânicos voláteis não-metânicos (COVNMs), óxidos de nitrogênio (NOx), perfluorcarbonos (CF_4 e C_2F_6), hidrofluorcarbonos (HFC-23, HFC-32, HFC-125, HFC-134a, HFC-143a, HFC-152a e hexafluoreto de enxofre (SF_6).

Figura 1: Estruturação da estimativa de emissões segundo agrupamentos sugeridos pelo IPCC, tipos de processos industriais ou uso de produtos, tipos de produtos, insumos e gases emitidos

Foram estimadas as emissões anuais a nível nacional, entre 1970 e 2014. Além disso, quando possível, as emissões foram alocadas nas unidades da federação (UFs), uma das inovações em relação à primeira versão do SEEG. Este trabalhou buscou distribuir as emissões estimadas a nível nacional entre as unidades da federação, obtendo-se uma primeira aproximação para as emissões por UF. No entanto, foram considerados os dados oficiais disponíveis de maneira agregada em instituições de abrangência nacional e algumas hipóteses simplificadoras foram assumidas. Desta forma, foram alocadas nas unidades da federação (UFs) somente as emissões relacionadas à produção de ferro-gusa e aço, ferroligas, alumínio, cimento, magnésio, ácido adípico, ácido nítrico, amônia, acrilonitrila, caprolactama, coque de petróleo calcinado e resinas ABS. Não foram alocadas emissões associadas à produção de outros metais não-ferrosos (que não alumínio e magnésio), cal, ácido fosfórico, carbureto de cálcio, cloreto de vinila, eteno, metanol, negro-defumo, óxido de eteno e outros petroquímicos, ao consumo de barrilha, ao uso de SF₆ em equipamento elétricos, ao uso não energético de combustíveis e ao uso de solventes; tampouco foram alocadas as emissões de HFCs.

Não se tratou, portanto, de um esforço de inventariar as emissões a partir de informações oficias de cada UF, de modo que a comparação entre os resultados gerados por esta metodologia e os resultados de inventários oficiais das UFs deve ser feita com muita cautela. Entretanto, como muitas UFs ainda não dispõem de inventários, o SEEG pode trazer informações valiosas, tanto pelos resultados que puderam ser gerados quanto pelas dificuldades metodológicas e lacunas de dados que o procedimento de alocação de emissões por UF apontou.


2. Método de Cálculo

2.1 Produção de Metais

2.1.1 Produção de ferro-gusa e aço

As emissões da produção de ferro-gusa e aço se dão pelo consumo de combustíveis como agentes redutores em altos-fornos (carvão vegetal, coque de petróleo, coque de carvão mineral e carvão mineral) e pelo consumo de carbonatos (calcário e dolomita) como fundentes nos altosfornos. Uma representação simplificada do processo de produção de ferro-gusa e de aço e das emissões de CO₂ contabilizadas em Processos Industriais e Uso de Produtos que estão relacionadas a ele é apresentada na Figura 2.

Figura 2: Representação simplificada da produção de ferro-gusa e de aço e dos processos que geram emissões

Consumo de combustíveis redutores

Conforme o procedimento adotado na versão para consulta pública do relatório **Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção de Metais – Relatório de Referência (MCTI, 2014),** as emissões de CO₂ são estimadas assumindo-se que elas ocorreriam de maneira semelhante à queima dos combustíveis em fornos, porém descontando o carbono que fica estocado nos metais produzidos. As emissões dos outros gases são também estimadas a partir da metodologia apresentada no relatório. As formulações a seguir representam o método empregado para cada tipo de gás:

$$E_{CO_2} = (C * 41,868 * Fe_{CO_2}) - (P * Est * \frac{44}{12})$$

Sendo:

 E_{CO_2} Emissão de CO_2 (t/ano)

C Consumo de combustível (ktep/ano)

41, **868** Fator de conversão de ktep para TJ (ktep/TJ)

 Fe_{CO_2} Fator de emissão de CO_2 por unidade de energia contida no combustível (kg CO_2 /TJ)PProdução física de ferro-gusa ou aço (t/ano)EstTeor mássico de carbono estocado no ferro-gusa ou aço (%C) $\frac{44}{12}$ Relação entre as massas molares de CO_2 e C

$$E_g = C * 41,868 * Fe_g$$

Sendo:

 E_g Emissão do gás g – CO, CH₄, NO_x, N₂O ou COVNM (kg/ano) C Consumo de combustível (ktep/ano) 41,868 Fator de conversão de ktep para TJ (ktep/TJ) Fe_g Fator de emissão do gás g – CO, CH₄, NO_x, N₂O ou COVNM (kg/TJ)

Os valores de consumo de combustíveis utilizados têm como fonte de informação o Balanço Energético Nacional (BEN) 2015, Ano-base 2014 (MME, 2015), enquanto os fatores de emissão têm como fonte de informação o relatório Emissões de Gases de Efeito Estufa por Queima de Combustíveis: Abordagem Bottom-Up (Anexo Metodológico) - Relatório de Referência (MCTI, 2014). Os teores mássicos de carbono estocado no aço (4%) e no ferro-gusa (1%) foram levantados no relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção de Metais – Relatório de Referência (MCTI, 2014).

A produção nacional de aço para 1970, 1971 e 2014 foi obtida a partir de planilhas disponibilizadas pelo MME em sua página na seção "Publicações e Indicadores - Balanço Energético Nacional – Séries Históricas por Tabela", arquivo "4.7.8 Consumo Específico de Energia em Setores Selecionados"². Para os demais anos (1972 a 2013), a produção física foi disponibilizada pelo Instituto Aço Brasil (IABr) mediante solicitação.

No caso do consumo de carvão vegetal, as emissões de CO₂ não são contabilizadas no Setor de Processos Industriais e Uso de Produtos, pois se considera que essas emissões são compensadas pela absorção de CO₂ na fotossíntese que gerou a biomassa, conforme recomendação do Painel Intergovernamental sobre Mudanças Climáticas. O mesmo não se aplica aos demais gases de efeito estufa, diretos e indiretos, que são contabilizados normalmente, a exemplo dos combustíveis fósseis.

² http://www.mme.gov.br/web/guest/publicacoes-e-indicadores

Alocação das emissões associadas ao consumo de combustíveis redutores

A produção de aço ocorreu em 11 unidades da federação ao longo do período entre 1970 e 2014. De modo a se obter uma primeira estimativa da alocação das emissões associadas ao consumo de combustíveis nesse processo, procurou-se levantar o consumo energético de coque de carvão mineral, carvão vegetal, coque de petróleo e carvão vapor 5900 e 6000 em ramos industriais associados à produção de ferro-gusa e aço nos Balanços Energéticos Estaduais dos principais estados produtores: Minas Gerais, Rio de Janeiro, São Paulo, Espírito Santo e Rio Grande do Sul. Somados, esses cinco estados foram responsáveis por, aproximadamente, 94% da produção de aço do país em 2013, dessa forma, uma pequena parcela das emissões permanece não alocada.

Uma vez que não estavam disponíveis dados a respeito do teor mássico de carbono estocado no aço para cada UF, as emissões de CO₂ foram alocadas com base no conteúdo de carbono fóssil contido nos combustíveis consumidos em cada estado, obtido a partir do primeiro termo da equação apresentada acima, sem que seja considerado o consumo de carvão vegetal:

Conteúdo de carbono =
$$(C * 41,868 * Fe_{CO_2})$$

Estimou-se qual porcentagem do conteúdo de carbono fóssil contido nos combustíveis consumidos no país cada UF representou ao longo do escopo temporal e, a partir dessa porcentagem, as emissões foram alocadas.

As emissões dos demais gases (CO, NO_x , COVNM, CH_4 e N_2O) puderam ser alocadas pela participação de cada estado no consumo de cada combustível, em relação ao total nacional, pois não é realizado o desconto do carbono estocado no aço para essas estimativas.

Os dados de consumo de combustíveis redutores e os fatores de emissão utilizados na elaboração dessas estimativas são apresentados no ANEXO A – Produção de metais: dados necessários para as estimativas de emissões.

Consumo de carbonatos fundentes³

Calcário e dolomita são utilizados como fundentes em altos-fornos de modo a tornar a escória gerada mais fluida e retirar impurezas na liga metálica produzida. Conforme apresentado na Figura 2, nas elevadas temperaturas dos altos-fornos, há reação de descarbonatação desses minerais, o que gera emissões de CO₂.

O relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produtos Minerais – Relatório de Referência (MCTI, 2014) estima essas emissões segundo a equação a seguir.

$$E_i = C_i * Fe_i$$

Onde:

 E_i Emissão anual de CO_2 pelo consumo do carbonato i em altos-fornos (tCO_2 /ano)

³ Apesar de essas emissões serem reportadas pela Comunicação Nacional na categoria "Produtos Minerais", optou-se por alocá-las em "Produção de Metais" conforme apresentado nas *Guidelines 2006* do IPCC.

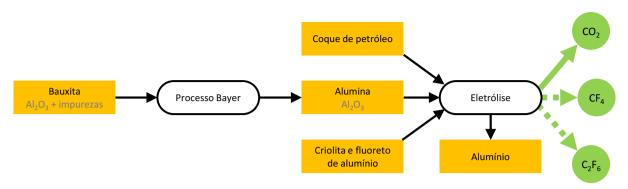
- C_i Consumo anual do carbonato i em altos-fornos (t carbonato/ano)
- Fe_i Fator de emissão de CO_2 no consumo do carbonato i (t CO_2 /t carbonato)

Os fatores de emissão são baseados na estequiometria das reações de calcinação dos carbonatos conforme apresentado pelo Relatório de Referência: 0,440 tCO₂/t calcário e 0,477 tCO₂/t dolomita. Esses valores foram obtidos considerando que os minérios são compostos exclusivamente por CaCO₃ (calcário) e CaCO₃.MgCO₃ (dolomita).

Para o período entre 1990 e 2012, o consumo de cada mineral foi levantado no Relatório de Referência. O consumo de dolomita em altos-fornos em 2013 foi obtido do **Anuário Estatístico do Setor Metalúrgico 2014 (MME 2014)**. O mesmo Anuário Estatístico apresenta o consumo de calcário em toda a siderurgia, o que inclui a quantidade destinada à produção cativa de cal. Para obter apenas o consumo desse mineral como fundente em altos-fornos, assumiu-se que a produção cativa de cal de 2012 se manteve constante (valor apresentado no Relatório de Referência) e, a partir da relação estequiométrica 100,09 g CaCO₃ / 56,08 g CaO, obteve-se a quantidade de calcário consumida na produção de cal; descontando esse valor do consumo reportado pelo Anuário Estatístico, estimou-se o consumo em altos-fornos apenas.

O consumo de carbonatos como fundentes entre 1970 e 1989 foi estimado através do produto entre a produção física de aço para o ano estimado e a relação entre o consumo de calcário ou de dolomita e a produção de aço para 1990. A equação a seguir ilustra essa estimativa onde o índice *i* indica o tipo de carbonato (calcário ou dolomita) e o índice *X* indica o ano para o qual as emissões foram estimadas.

$$C_i^X = \frac{C_i^{1990}}{P_{aço}^{1990}} * P_{aço}^X$$


Durante a elaboração deste documento, o **Anuário Estatístico do Setor Metalúrgico 2015** (**MME 2015**) ainda não havia sido publicado, dessa forma, considerou-se que o consumo de calcário e dolomita se manteve constante entre 2013 e 2014.

A ausência de dados a respeito do consumo estadual dos carbonatos impossibilitou a alocação dessas emissões nas UFs.

2.1.2 Produção de alumínio

As emissões de CO_2 da produção de alumínio são aquelas decorrentes da redução eletrolítica da alumina (AI_2O_3) em alumínio metálico (AI) através de um ânodo de carbono (C), este último geralmente oriundo de coque de petróleo. Além disso, tal meio eletrolítico é composto de criolita e fluoreto de alumínio (fundentes), substâncias que, por um fenômeno chamado efeito anódico, provocam a ocorrência de emissões de fluorocarbonos (CF_4 e C_2F_6). Essas emissões de gases de efeito estufa são representadas na Figura 3.

Figura 3: Produção de alumínio metálico e processos que geram emissões

As emissões reportadas pelo relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção de Metais – Relatório de Referência (MCTI, 2014) foram estimadas a partir de metodologias distintas conforme a disponibilidade de informações de cada uma das sete plantas produtoras do metal no país.

Dessa forma, o Relatório de Referência apresenta fatores de emissão implícitos específicos para cada rota de produção (*Soderberg* ou *Prebaked Anode*⁴) que representariam a produção nacional. Esses fatores foram utilizados nas estimativas do SEEG como representado na equação a seguir.

$$E_{g,p,i} = P_{p,i} * Fe_{g,i,t}$$

Onde:

 $E_{g,p,i}$ Emissão do gás g, na planta p, no ano i na produção de alumínio (t gás/ano)

 $P_{p,i}$ Produção de alumínio metálico na planta p, no ano i (t alumínio/ano)

 $Fe_{g,i}$ Fator de emissão implícito do gás g na produção de alumínio no ano i, pela rota tecnológica t (t gás/t alumínio)

Os fatores de emissão utilizados para os anos entre 1990 e 2010 são os mesmos apresentados pelo Relatório de Referência para os três gases: CO_2 , CF_4 e C_2F_6 . Para o período 1970-1989 foram utilizados os fatores reportados para 1990 e, da mesma forma, os fatores de 2010 foram utilizados para o período 2011-2014⁵.

Para todo o horizonte temporal das estimativas (1970 a 2014), a produção física de alumínio de cada planta foi obtida a partir de comunicação pessoal com a Associação Brasileira de Alumínio

⁴ A diferença principal entre as duas rotas tecnológicas se encontra na configuração do ânodo utilizado no processo: na rota com ânodos pré-cozidos (*Prebaked Anode*) são utilizados blocos de carbono pré-cozido como ânodo, já na rota *Soderberg* é utilizada uma pasta anódica que é cozida ao longo da redução eletrolítica. No Brasil apenas uma rota tecnológica é utilizada em cada planta.

⁵ Na década de 1990 houve um esforço da indústria produtora de alumínio para reduzir o efeito anódico, dessa forma, manter constante os fatores de emissão pode ter feito com que as emissões estimadas para o período entre 1970 e 1989 tenham sido subestimadas. Porém, na ausência de dados referentes a esse período, assumiram-se constantes os fatores reportados para 1990.

(Abal). A obtenção da produção por planta possibilitou a alocação das emissões nas unidades da federação.

2.1.3 Produção de magnésio⁶

A produção brasileira de magnésio metálico é baseada no processo sílico-térmico e utiliza a dolomita como matéria-prima. Toda a produção é realizada pela Rima Industrial S.A. em Minas Gerais, dessa forma, as emissões de CO_2 e de SF_6 associadas a esse processo foram alocadas nesse Estado.

As atividades da Rima tiveram início em 1987, porém não foi possível levantar dados referentes à produção de magnésio para o período anterior a 1990. Dessa forma, as emissões entre 1987 e 1989 não foram estimadas.

Consumo de dolomita

Durante o processo sílico-térmico a dolomita sofre reação química semelhante a calcinação, gerando emissões de CO₂. No relatório **Emissões de Gases de Efeito Estufa nos Processos Industriais: Produtos Minerais – Relatório de Referência (MCTI, 2014),** essas emissões são estimadas pelo produto entre a produção física de magnésio e o fator de emissão *default* apresentado nas *Guidelines 2006* do IPCC (5,13 tCO₂/t magnésio).

A produção física de magnésio entre 1990 e 2011 foi obtida no Relatório de Referência. Por falta de informações mais recentes, assumiu-se que a produção de 2011 se manteve constante entre 2012 e 2014.

Consumo de hexafluoreto de enxofre

O magnésio se encontra fundido no final do processo sílico-térmico e, de modo a evitar a oxidação do metal, é utilizado um "gás de cobertura" como proteção. Esse gás, em geral, escapa para a atmosfera e, de acordo com o relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção de Metais – Relatório de Referência (MCTI, 2014), todo o gás utilizado no processo é emitido.

A Rima utilizava o hexafluoreto de enxofre (SF₆) como gás de cobertura e o Relatório de Referência apresenta as emissões decorrentes desse consumo entre 1990 e 2009. Devido a um programa de controle de emissões de gases de efeito estufa, a proteção do metal passou a ser feita com dióxido de enxofre (SO₂). Sendo assim, as emissões de SF₆ por conta dessa atividade passam a ser nulas a partir de 2010.

-

⁶ Apesar dessas emissões serem reportadas pela Comunicação Nacional na categoria "Produtos Minerais", optou-se por alocá-las em "Produção de Metais" conforme apresentado nas *Guidelines 2006* do IPCC.

2.1.4 Produção de ferroligas e de outros metais não-ferrosos

Emissões decorrentes da produção de ferroligas e da produção de outros metais não-ferrosos (excetuando o alumínio e o magnésio) são também provenientes do consumo de combustíveis como agentes redutores em altos-fornos (carvão vegetal, coque de petróleo, coque de carvão mineral e carvão mineral). Sendo assim, a metodologia e as fontes de informação utilizadas para produzir essas estimativas são as mesmas apresentada no item 2.1.1 (Consumo de combustíveis redutores).

De acordo com o relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção de Metais – Relatório de Referência (MCTI, 2014) assume-se que o carbono estocado é desprezível tanto em ferroligas quanto em outros metais não-ferrosos. Desta forma, a produção física desses metais não é dado necessário às estimativas.

Cabe destacar que as emissões relacionadas ao uso de coque de petróleo na produção de outros metais não-ferrosos não são estimadas a partir de todo o consumo reportado pelo BEN, uma vez que parte desse consumo é destinada à produção de anodos de carbono (C) usados na produção de alumínio metálico. O consumo efetivamente destinado ao uso em fornos de produção de outros metais não-ferrosos para o período entre 1990 e 2012 foi obtido no Relatório de Referência. Para os anos entre 1970 e 1989, as equações a seguir representam a maneira como o consumo de coque de petróleo em fornos de produção de outros metais não-ferrosos foi estimado.

$$C_{coque,Al}^{X} = \frac{C_{coque,Al}^{1990}}{P_{Al}^{1990}} * P_{Al}^{X}$$

$$C_{coque,outros}^{X} = C_{coque,total}^{X} - C_{coque,Al}^{X}$$

Onde:

 $C_{coque,Al}^{X}$ Consumo anual de coque de petróleo na produção de anodos utilizados na produção de alumínio no ano X (ktep/ano)

 P_{AI}^{X} Produção física de alumínio no ano X (t alumínio/ano)

 $C_{coque,outros}^{X}$ Consumo anual de coque de petróleo na produção de outros metais não-ferrosos no ano X (ktep/ano)

 $C_{coque,total}^{X}$ Consumo anual de coque de petróleo no setor "Não Ferrosos e Outros da Metalurgia" do BEN (ktep/ano)

Ou seja, assumiu-se que a razão entre o consumo de coque de petróleo como anodo da produção de alumínio e a produção física de alumínio se manteve constante nos anos em que esse valor não é conhecido⁷.

A variável $C^{X}_{coque,total}$ para o período entre 1970 e 1984 foi obtida como sendo o consumo de outros energéticos de petróleo, pois era essa a classificação utilizada pelo BEN para os fluxos relacionados ao coque de petróleo nesse período.

Para estimar esse consumo para os anos de 2013 e 2014, o procedimento adotado foi o mesmo, porém os termos relacionados a 1990 na equação passam a ter como ano de referência 2012.

Ao se levantar o consumo de combustíveis redutores para os principais estados produtores de ferro-gusa e aço, foi possível estimar a participação de Minas Gerais e São Paulo nas emissões associadas à produção de ferroligas. O restante das emissões nessa atividade não foram alocadas.

Também não foram alocadas as emissões associadas à produção de outros metais nãoferrosos. Todos os dados utilizados na elaboração dessas estimativas são apresentados no ANEXO A – Produção de metais: dados necessários para as estimativas de emissões.

2.2 Produtos Minerais

Nesta seção são apresentados a metodologia e os dados necessários à elaboração das estimativas de emissões de CO₂ relacionadas a quatro processos envolvendo produtos minerais: produção de cimento, produção de cal, produção de vidro e consumo de barrilha.

O carbono emitido na forma de CO₂ nessas atividades se encontrava presente em substâncias químicas que possuem o ânion carbonato (CO_3^{2-}) em sua estrutura; calcário, dolomita e barrilha, por exemplo. As reações químicas a seguir (descarbonatação térmica do calcário e da dolomita) ilustram essas emissões:

$$CaCO_3 + calor \rightarrow CaO + CO_2$$

 $MgCO3.CaCO_3 + calor \rightarrow MgO.CaO + 2CO_2$

2.2.1 Produção de cimento

As emissões relacionadas à produção de cimento estão associadas à descarbonatação do calcário e da dolomita (CaCO₃ e MgCO₃, respectivamente) nos fornos de clinquerização onde esse

⁷ Assumir que essa variável se manteve constante no período entre 1970 e 1989 pode ter subestimado o consumo de coque na produção dos anodos e, consequentemente, superestimado as emissões relacionadas ao consumo de coque de petróleo na produção de outros metais não-ferrosos; isso ocorre devido aos esforços de melhoria do processo produtivo do alumínio durante a década de 1990: o consumo de coque por tonelada de alumínio foi sendo reduzido ao longo do tempo. Porém, por conta da ausência de informações referentes a essa variável, assumiu-se o consumo específico como constante.

mineral se transforma em cal (mistura de CaO e MgO) que é parte integrante do clínquer, matériaprima da fabricação do cimento. O dióxido de carbono (CO₂) é o outro produto dessa reação.

Não são aqui contabilizadas emissões provenientes da queima de combustíveis nos fornos de clinquerização; essas emissões são reportadas no Setor de Energia, no subsetor industrial Cimento. A Figura 4 ilustra as emissões contabilizadas além de representar o processo produtivo de cimento.

Carbonatos
CaCO₃, MgCO₃

Descarbonatação

Argila e outros
aditivos

Coque de petróleo

Combustão

CO₂

Contabilizado no Setor de Energia

Figura 4: Produção de cimento e processos que geram emissões

O relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produtos Minerais – Relatório de Referência (MCTI, 2014) aponta que as emissões de CO₂ foram estimadas através de fatores de emissão baseados no teor de óxido de cálcio (CaO) e óxido de magnésio (MgO) presentes no clínquer, na quantidade de aditivos utilizados na produção (escória, *fly ash*, pozolanas e CKD) e na quantidade de carbono orgânico presente nos carbonatos.

Uma vez que esses dados não são disponibilizados no Relatório de Referência, foi adotada uma metodologia simplificada que utiliza fatores de emissão baseados na produção física de clínquer. A equação a seguir representa a metodologia empregada no SEEG para estimar as emissões de cada ano:

$$E_{CO_2} = Prod_{cimento} * X_{clinquer} * Fe_{clinquer}$$

Onde:

 E_{CO_2} Emissão anual de CO_2 pela produção de cimento (tCO_2 /ano)

Prod_{cimento} Produção física anual de cimento (t cimento/ano)

 $X_{clinquer}$ Teor de clinquer contido no cimento no ano estimado (t clinquer/t cimento)

 $Fe_{clinquer}$ Fator de emissão de CO_2 na produção de clinquer no ano estimado (tCO_2/t clinquer)

Dois conjuntos de dados de atividade são necessários na aplicação da equação apresentada: a evolução da produção de cimento e o teor de clínquer presente no cimento ao longo do escopo temporal das estimativas (1970-2014).

A produção física de cimento foi levantada junto ao SNIC (Sindicato Nacional da Indústria do Cimento) através de comunicação direta e do **Relatório Anual 2013 (SNIC, 2014)**. Desta forma, obteve-se a produção anual e por UF de cimento para o período entre 1971 e 2013. Para 1970 a produção por UF não se encontrava disponível e a produção nacional foi obtida através da página do MME (Ministério de Minas e Energia)⁸. A série histórica levantada para essas estimativas é apresentada no ANEXO B – Produção física de cimento.

Parte da produção divulgada para o período 1971-2013 não se encontrava por UF (produção de cimento branco ou ajustes estatísticos); portanto, as emissões associadas à produção dessas quantidades de cimento não foram alocadas. Na indisponibilidade de dados a respeito da produção estadualizada para 2014, a produção nacional foi distribuída entre as UFs conforme a distribuição de 2013.

O teor de clínquer contido no cimento foi obtido através dos dados de produção de cimento e de clínquer publicados no Relatório de Referência para o período entre 1990 e 2010; para anos anteriores a 1990 e posteriores a 2010, foram utilizados os teores dos anos mais próximos disponíveis⁹. Apesar de haver diferença entre os teores de clínquer do cimento produzido em cada UF, por falta de informação aplicou-se o teor médio nacional nas estimativas estaduais de emissões.

Os fatores de emissão foram obtidos de maneira semelhante ao teor de clínquer contido no cimento: para o período 1990-2010 utilizaram-se as emissões de CO₂ e a produção de clínquer divulgados no Relatório de Referência, de modo a obter um fator de emissão implícito para cada ano. Para preencher as lacunas restantes na série histórica o procedimento foi o mesmo adotado na obtenção do teor de clínquer; tanto os fatores de emissão implícitos quanto o teor de clínquer utilizados são os mesmos apresentados pelo Relatório de Referência¹⁰.

2.2.2 Produção de cal

A produção de cal é realizada a partir da descarbonatação de carbonatos de cálcio e magnésio $(CaCO_3 \ e \ MgCO_3)$. Ambos os minerais (calcários calcíticos e dolomíticos) emitem CO_2 ao serem aquecidos nos fornos de produção de cal. Mais uma vez não são contabilizadas aqui as emissões provenientes do consumo de combustível nos fornos, as quais são reportadas no Setor de Energia.

⁹ Manter constante para o período 1970-1989 o teor de clínquer apresentado no Relatório de Referência para 1990 subestima as emissões desse período, uma vez que, segundo a tendência apresentada pelos dados do relatório, o teor passou a ser reduzido a partir de 1990. Ainda que essas condições sejam conhecidas, a ausência de dados mais precisos a esse respeito impede que outras premissas sejam assumidas.

⁸ http://www.mme.gov.br/web/guest/publicacoes-e-indicadores

¹⁰ Assumir que o fator de emissão implícito apresentado no Relatório de Referência se manteve constante entre 1970 e 1989 superestima as emissões desse período, pois não era prática recorrente das indústrias produtoras reinjetar nos fornos o CKD gerado na descarbonatação (*cement kiln dust*). Dessa forma, ainda que as emissões desses particulados fossem maiores, as emissões de CO₂ seriam menores. Ainda que essas condições sejam conhecidas, a ausência de dados mais precisos a esse respeito impede que outras premissas sejam assumidas.

A Figura 5 representa o processo produtivo da cal virgem (mistura de CaO e MgO) e da cal hidratada (mistura de Ca(OH)₂ e Mg(OH)₂).

Carbonatos
CaCO₃, MgCO₃

Cal Virgem
CaO, MgCO
Adição de água

Cal Hidratada
Ca(OH)₂,
Mg(OH)₂

Combustíveis

Combustáo

CO₂ (Contabilizado no Setor de Energia)

Figura 5: Produção de cal e processos que geram emissões

Segundo o relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produtos Minerais – Relatório de Referência (MCTI, 2014), as emissões são estimadas a partir de fatores de emissão específicos para a composição química de cada tipo de cal: calcítica, dolomítica e magnesiana.

 $E_i = Prod_i * Fe_i$

Onde:

 E_i Emissão anual de CO_2 pela produção de cal do tipo i (t CO_2 /ano)

Prod_i Produção física anual de cal do tipo i (t cal/ano)

 Fe_i Fator de emissão de CO_2 na produção de cal do tipo i (t CO_2 /t cal)

Foram levantadas as séries históricas de produção de cal virgem e hidratada e, a partir das composições químicas médias apresentadas no Relatório de Referência, foram obtidas as produções físicas de cal por tipo (calcítica, magnesiana e dolomítica); considera-se que toda a cal virgem é calcítica e que a cal hidrata está dividida em 20% calcítica, 30% dolomítica e 50% magnesiana.

Entre 1990 e 2012 as produções de cal virgem e hidratada são apresentadas no Relatório de Referência. Para os demais períodos, apenas a produção total de cal estava disponível; assim, adotou-se a porcentagem mais recente disponível da produção total de cada tipo de cal. A produção de 2013 foi obtida no Anuário Estatístico do Setor de Transformação de Não Metálicos 2014 (MME, 2014) e, para o período 1970-1989, no relatório Estudos de Referência do Plano Duodecenal de Geologia, Mineração e Transformação Mineral 2030 (MME, 2009) – Perfil da Cal.

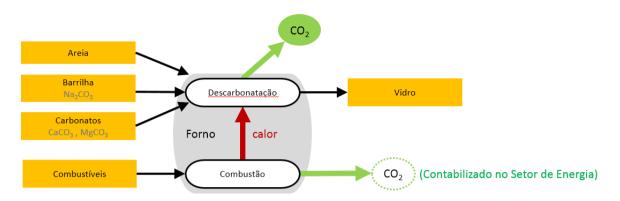
Durante a elaboração deste documento, o **Anuário Estatístico do Setor de Transformação de Não Metálicos 2015 (MME, 2015)** ainda não havia sido publicado, dessa forma, considerou-se constante a produção de cal entre 2013 e 2014.

No ANEXO C são apresentados os dados da produção física de cal, por tipo, utilizados nas estimativas das emissões.

Não foi possível levantar dados para que as emissões pudessem ser alocadas nas UFs com a qualidade necessária para estimativas confiáveis.

O fator de emissão de cada tipo de cal produzida depende da sua composição química, que está diretamente relacionada com o consumo de calcário e dolomita no forno de produção.

A Tabela 1 apresenta a composição química dos três tipos de cal e os fatores de emissão empregados, conforme exposto no Relatório de Referência. Não estavam disponíveis valores referentes à evolução histórica da composição química média dos tipos de cal produzidos no país. Desta forma, utilizou-se a mesma composição ao longo de todo o período.


Tabela 1: Composição química e fatores de emissão dos tipos de cal

Tine de Cal	Composição N	Fator de Emissão		
Tipo de Cal	% CaO	% CaO.MgO	(tCO2/t cal)	
Calcítica	88,0	12,0	0,800	
Magnesiana	46,2	53,8	0,854	
Dolomítica	8,2	91,8	0,903	

2.2.3 Produção de vidro

Os fornos de produção de vidro consomem, entre outros minerais, calcário e dolomita, os quais emitem CO₂ devido à reação de descarbonatação que ocorre em temperaturas elevadas. As emissões contabilizadas nesta seção dizem respeito apenas a esse consumo. Emissões por consumo de barrilha são estimadas conforme descrito na seção 2.2.4, e emissões geradas pelo consumo de combustível nos fornos são estimadas no Setor de Energia. O processo de produção de vidro e as emissões associadas podem ser representados pelo esquema da Figura 6.

Figura 6: Produção de vidro e processos que geram emissões

O SEEG utiliza a mesma metodologia apresentada no relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produtos Minerais – Relatório de Referência (MCTI, 2014), nela as emissões são estimadas através da produção física de vidro virgem (diferença entre a quantidade total de vidro produzida e a quantidade de vidro reciclado) conforme a equação a seguir:

$$E_{CO_2,i} = Prod_{vidro\ virgem} * X_i * Fe_{CO_2,i}$$

Onde:

 $E_{\mathcal{CO}_2,i}$ Emissão anual de CO_2 pelo consumo do carbonato i na produção de vidro virgem

(tCO₂/ano)

 ${\it Prod}_{vidro\,virgem}$ Produção física anual de vidro virgem (t vidro/ano)

 X_i Consumo específico do carbonato i na produção de vidro virgem (t carbonato/t

vidro)

 $Fe_{CO_{2}.i}$ Fator de emissão de CO_{2} do consumo do carbonato i na produção de vidro virgem

(tCO₂/t carbonato)

O Relatório de Referência apresenta a evolução da produção física de vidro. No que diz respeito às estimativas para o período anterior a 1990, estimou-se a produção total de vidro a partir da extrapolação por uma função exponencial obtida através dos valores disponíveis para o período 1990-2011 como uma forma provisória de estimar essa variável devido à ausência de informações mais precisas para o período. A produção de vidro virgem do período anterior foi estimada através da porcentagem de vidro reciclada apresentada no Relatório de Referência para 1990 (11%).

Uma vez que a produção de vidro para os anos entre 2012 e 2013 não estava disponível no **Anuário Estatístico do Setor de Transformação de Não Metálicos 2014 (MME, 2014),** as emissões de 2011 foram repetidas para esses dois anos. O consumo específico foi obtido no Relatório de Referência e é apresentado como sendo 10% para o calcário e 2% para a dolomita.

Como explicitado anteriormente, o **Anuário Estatístico do Setor de Transformação de Não Metálicos 2015 (MME, 2015)** ainda não havia sido publicado durante a elaboração destas estimativas, dessa forma, considerou-se constante a produção de vidro também para 2014.

Não foi possível levantar dados para que as emissões pudessem ser alocadas nas UFs com a qualidade necessária para estimativas confiáveis.

Os fatores de emissão são os mesmos apresentados nas estimativas de emissões geradas pelo consumo de fundentes em altos-fornos: $0,440 \text{ tCO}_2/\text{t}$ calcário e $0,477 \text{ tCO}_2/\text{t}$ dolomita.

2.2.4 Consumo de barrilha

Além das emissões associadas à produção de vidro, o consumo de barrilha (Na_2CO_3) também é responsável por emissões relacionadas às indústrias de papel e celulose e de produção de sabões e detergentes, além do uso no tratamento de água.

A metodologia empregada pelo SEEG é a mesma utilizada no relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produtos Minerais – Relatório de Referência (MCTI, 2014) que estima as emissões de CO₂ como sendo o produto entre o consumo de barrilha em toneladas e o fator de emissão em tCO₂/tNa₂CO₃.

Para os anos entre 1990 e 2011 o consumo de barrilha foi levantado no Relatório de Referência, para os demais anos o dado foi obtido em versões do **Anuário da Indústria Química Brasileira (Abiquim)**¹¹ conforme listado na Tabela 3. No ANEXO D — Produção, importação, exportação e consumo de barrilha são apresentados os dados de atividade utilizados nas estimativas.

O fator de emissão é apresentado também no Relatório de Referência e se baseia na proporção estequiométrica 1 mol CO_2 : 1 mol Na_2CO_3 da reação de consumo de barrilha $(0,415tCO_2/tNa_2CO_3)$.

Não foi possível levantar dados para que as emissões pudessem ser alocadas nas UFs com a qualidade necessária para estimativas confiáveis.

2.3 Indústria Química

As emissões relacionadas às atividades da indústria química estimadas no setor de Processos Industriais são aquelas denominadas como emissões de processo, ou seja, os gases estimados são subprodutos dos processos de produção de outras substâncias químicas. A Tabela 2 resume as

¹¹ Os Anuários da Abiquim e o Relatório de Referência apresentam os dados de produção, importação e exportação de barrilha ao longo do tempo, o consumo é estimado como sendo produção + importação – exportação.

substâncias químicas cujas emissões associadas aos processos de produção foram estimadas e os respectivos gases de efeito estufa emitidos.

Tabela 2: Substâncias químicas e GEEs emitidos em seus processos de produção

Ano	CO ₂	CH ₄	N ₂ O	СО	NO _x	COVNM
Amônia	Х					
Ácido Nítrico			Х		Х	
Ácido Adípico			Х	Х	Х	
Caprolactama			Х			
Carbureto de Cálcio	Х					
Metanol	Х	Х				
Etileno	Х	Х				Х
Dicloroetano e Cloreto de Vinila	Х	Х				Х
Óxido de Eteno	Х	Х				
Acrilonitrila	Х	Х				Х
Coque de Petróleo Calcinado		Х				
Negro-de-fumo	Х	Х			Х	
Ácido Fosfórico	Х					
Outros Produtos Químicos ¹²						Х

Em alguns dos processos que geram emissões de CO₂, o carbono presente nesse gás é proveniente de biomassa que é utilizada como matéria-prima; se assume que essas emissões tenham sido compensadas pela absorção de CO₂ ocorrida no processo de fotossíntese que gerou a biomassa. Segundo a metodologia do IPCC, emissões de CO₂ associadas a queima ou uso de biomassa são contabilizadas nos setores de Mudança de Uso da Terra e Agropecuária. No que diz respeito aos outros gases de efeito estufa, as emissões de biomassa também devem ser contabilizadas.

De modo geral, as emissões foram estimadas baseando-se em dois conjuntos de dados: fatores de emissão e produção física de substâncias químicas. A equação a seguir representa a metodologia empregada.

$$E_{g,p} = Prod_p * Fe_{g,p}$$

Onde:

 $\pmb{E}_{m{g},m{p}}$ Emissão anual do gás $m{g}$ pela produção da substância química $m{p}$ (t gás/ano)

¹² Inclui a produção de Resinas ABS, Anidrido Ftálico, Borracha de Butadieno Estireno (SBR), Estireno, Etilbenzeno, Formaldeído, Policloreto de Vinila (PVC), Poliestireno, Polietileno (PEAD, PEBD, PELBD), Polipropileno e Propeno.

$Prod_p$	Produção física anual da substância química p (t substância/ano)
----------	---

 $Fe_{g,p}$ Fator de emissão do gás **g** na produção da substância química **p** (t gás/t substância)

A produção física das substâncias químicas de interesse foi levantada através das edições disponíveis do Anuário da Indústria Química Brasileira (Abiquim) e do relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Indústria Química – Relatório de Referência (MCTI, 2014) de modo a preencher a série histórica do escopo temporal das estimativas do SEEG (1970-2014).

A Tabela 3 resume as fontes de informação utilizadas para a maioria das substâncias químicas. No ANEXO E – Produção física de substâncias químicas são apresentados os valores utilizados na formulação das estimativas realizadas por tipo de produto.

Tabela 3: Fontes de informação da produção física de substâncias químicas

Período	Fonte de Informação
1970-1971	Anuário da Indústria Química Brasileira (Abiquim, 1973)
1972-1973	Anuário da Indústria Química Brasileira (Abiquim, 1974)
1974-1984	Anuário da Indústria Química Brasileira (Abiquim, 1985)
1985-1989	Anuário da Indústria Química Brasileira (Abiquim, 1990)
1990-2010	Relatório de Referência do 3º Inventário Nacional (MCTI, 2014)
2011-2013	Anuário da Indústria Química Brasileira (Abiquim, 2014)
2014	Produção física de 2013 mantida constante

Para alguns produtos essas fontes de informação não foram suficientes para obter os dados de atividade necessários às estimativas, as adaptações realizadas são listadas nas seções a seguir.

2.3.1 Produção de amônia

Processos que geram emissões

São estimadas emissões de CO₂ originadas durante a produção de hidrogênio (insumo da produção de amônia) a partir de gás natural, resíduo asfáltico, gás de refinaria e nafta; é possível obter hidrogênio a partir de etanol, porém nesse caso as emissões líquidas de CO₂ associadas são consideradas nulas. Segundo o relatório **Emissões de Gases de Efeito Estufa nos Processos Industriais: Indústria Química – Relatório de Referência (MCTI, 2014)**, ainda que parte do CO₂ gerado possa ser utilizado como insumo na produção de ureia e metanol em plantas integradas, recuperado para utilização como fluido refrigerante e na carbonatação de líquidos ou como gás inerte, em todos esses casos ele acaba sendo emitido a curto prazo.

O fator de emissão utilizado nas estimativas representa uma média das medições realizadas por cada uma das empresas produtoras uma vez que as emissões são dependentes da matéria-prima utilizada na produção de hidrogênio. Para todo o escopo temporal das estimativas o fator

de emissão foi 1,46 tCO₂/t amônia, conforme apresentado no relatório **Emissões de Gases de Efeito Estufa nos Processos Industriais: Indústria Química – Relatório de Referência (MCTI, 2014)**.

No Brasil, a produção de amônia ocorre em seis UFs: Bahia, Minas Gerais, Paraná, Rio de Janeiro, Sergipe e São Paulo, conforme o Guia da Indústria Química Brasileira 2013 (Abiquim, 2014). A produção física de amônia não se encontra disponibilizada para cada UF. Assim, simplificadamente, distribui-se a produção nacional proporcionalmente aos valores de capacidade instalada de cada uma das plantas ao longo do tempo de acordo com os valores reportados nas edições do Anuário da Indústria Química Brasileira (Abiquim). Dessa forma, todas as emissões pela produção de amônia foram alocadas.

2.3.2 Produção de ácido nítrico

A produção tradicional de ácido nítrico (HNO_3) é baseada na oxidação catalítica da amônia com o ar seguida da reação dos produtos da oxidação com água (processo de Ostwald), essas reações são responsáveis pelas emissões de NO_x do processo; além delas, parte da amônia participa de reações paralelas indesejáveis. Em uma delas o óxido nitroso (N_2O) é um subproduto.

As reações mencionadas são representadas a seguir:

Sequência de reações de oxidação catalítica da amônia e produção do HNO₃:
 4 NH₃ + 5 O₂ → 4 NO + 6 H₂O
 2 NO + O₂ → 2 NO₂ → N₂O₄

Reações paralelas indesejáveis:

 $3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 + \text{NO}$

 $4 \text{ NH}_3 + 4 \text{ O}_2 \rightarrow 2 \text{ N}_2\text{O} + 6 \text{ H}_2\text{O}$

 $4 \text{ NH}_3 + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{O}$

 $2 \text{ NO} \rightarrow N_2 + O_2$

 $4 \text{ NH}_3 + 6 \text{ NO} \rightarrow 5 \text{ N}_2 + 6 \text{ H}_2\text{O}$

Parte das plantas no país produzem ácido nítrico sob condições de alta pressão, rota tecnológica que não provoca emissões de NO_x e N₂O. Dessa forma, a produção física utilizada nas estimativas deve representar apenas aquela associada às plantas responsáveis pelas emissões. Para o período entre 1990 e 2010 esses dados foram obtidos no relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Indústria Química – Relatório de Referência (MCTI, 2014); para períodos anteriores a 1990 e posteriores a 2010 foram utilizadas as proporções dos anos mais próximos disponíveis entre a produção responsável por emissões e a produção total levantada conforme a Tabela 3 (70% em 2010 e 75% em 1990).

Segundo o Relatório de Referência, no que diz respeito às emissões de N₂O das plantas que não utilizam a rota tecnológica de alta pressão, foram feitas medições reais de emissões através de projetos de controle de emissões ¹³ ou foi aplicado o fator de emissão default apresentado nas Guidelines 2006 do IPCC através do método Tier 1. Uma vez que esses dados não estão explicitados no relatório, foi estimado um fator de emissão implícito através da produção de ácido nítrico pelas plantas que não são de alta pressão e as emissões reportadas pelo relatório de referência para o

-

¹³ Plantas PAN2 e PAN4, da Fosfertil e planta de Paulínia, da Rhodia.

período entre 1990 e 2010. As emissões anteriores a 1990 foram estimadas pelo fator calculado para 1990 ($6,12~kgN_2O/tHNO_3$), e as posteriores a 2010, pelo fator calculado para 2010 ($2,22~kgN_2O/tHNO_3$)¹⁴. Projetos de controle de emissões de GEE ocorridos após 2010 não foram considerados e serão incorporados nas próximas versões do SEEG.

As emissões de NO_x foram estimadas através do fator apresentado no Relatório de Referência, específico para as condições nacionais de produção que leva em conta o controle de emissões desses gases no país: 1,75 kg NO_x /tH NO_3 .

Uma vez que a produção de ácido nítrico em cada UF não está publicamente disponível, utilizou-se metodologia similar à apresentada na alocação das emissões provenientes da produção de amônia, onde assumiu-se que a produção local é proporcional à respectiva capacidade instalada. Dessa forma, foi possível distribuir as emissões nacionais entre as UFs produtoras de HNO₃: Bahia, Rio de Janeiro e São Paulo.

2.3.3 Produção de ácido adípico

A única planta responsável pela produção nacional de ácido adípico realiza o processo em dois estágios: oxidação do cicloexano para produzir a mistura cicloexanona/cicloexanol, seguida da oxidação do cicloexanol através do ácido nítrico; nesta última etapa é emitido óxido nitroso. Por meio de um projeto de controle de emissões foi construída uma instalação de decomposição térmica do N_2O em N_2 , reduzindo drasticamente as emissões desse GEE a partir de 2007.

As emissões de N_2O foram estimadas através de fatores de emissão levantados no projeto de controle de emissões: 0,27 tN2O/t ácido adípico para o período 1990-2006 e variando entre 0,0064 e 0,00155 t N_2O /t ácido adípico para o período 2007-2010 (estimados fatores de emissão implícitos através dos dados do Relatório de Referência). O fator de 2010 foi fixado para os anos posteriores e o fator levantado para 1990 foi fixado para os anos anteriores.

Os fatores de emissão de CO e NO_x levam em conta o controle de emissões desses gases no país, sendo 16 kgCO e 5 kg NO_x /t ácido adípico, conforme publicado no Relatório de Referência.

A produção física dessa substância possui as mesmas fontes de informação apresentadas na Tabela 3, excetuando o período entre 2011 e 2014, para o qual não havia dados disponíveis e a produção de 2010 foi repetida por simplificação. Todas as emissões foram alocadas em São Paulo, UF onde se localiza a planta responsável por toda a produção nacional de ácido adípico.

2.3.4 Produção de caprolactama

A planta responsável pela produção nacional de caprolactama encerrou suas atividades em 2010. Essa produção era realizada através da hidrogenação do benzeno a cicloexano, seguida da oxidação deste composto a cicloexanona e cicloexanol através de HNO $_3$ (emissões de N $_2$ O ocorrem nesta etapa); por fim o cicloexanol é desidrogenado e, após essa etapa, reagido com sulfato.

1

¹⁴ Após 2010, alterações nos processos produtivos de algumas plantas, que implicariam em mudanças no fator de emissão, mas que, por falta de informações prontamente disponíveis, essas alterações não foram levadas em conta nesta versão do SEEG.

Segundo o Relatório de Referência, foi levantado um fator de emissão pela metodologia Tier 3 – Guidelines 2006 (medições diretas) e aplicado para todo o escopo temporal: $6 \text{ kgN}_2\text{O/t}$ caprolactama; esse mesmo fator foi utilizado na elaboração das estimativas.

O único estado responsável pela produção de caprolactama no país foi a Bahia; assim, todas as emissões nacionais foram alocadas nessa UF.

2.3.5 Produção de carbureto de cálcio

A produção nacional de carbureto de cálcio é realizada através da redução da cal (CaO) com coque de petróleo ou carvão vegetal (C). As emissões relacionadas à produção de cal (descarbonatação do calcário) são contabilizadas no subsetor de Produtos Minerais (seção 0); Já as associadas à redução da cal através de coque de petróleo¹⁵ devem ser alocadas como processos da indústria química. Essas emissões estão associadas às seguintes reações químicas:

$$CaO + 3C \rightarrow CaC_2 + CO (+ \frac{1}{2} O_2 \rightarrow CO_2)$$

Tanto os dados de produção física de carbureto de cálcio quanto os fatores de emissão associados não são publicados pela única fabricante no Brasil, que os classifica como confidenciais no Relatório de Referência. Dessa forma, para o período entre 1990 e 2010, as emissões reportadas pelo SEEG são as mesmas apresentadas pelo 3º Inventário Brasileiro, e as emissões de 2010 foram repetidas para o período 2011-2014 por simplificação. Segundo o relatório de referência da Comunicação Nacional, as emissões começaram a ocorrer em 1995. As emissões anteriores a esse ano foram consideradas nulas.

A ausência de informações a respeito dos dados necessários à elaboração das estimativas impossibilitou qualquer alocação das emissões associadas à produção de carbureto de cálcio.

2.3.6 Produção de metanol

O metanol é produzido no país através da síntese em altas e baixas pressões, utilizando como matéria-prima o gás natural (metano é o componente majoritário da mistura que compõem esse combustível) e o dióxido de carbono. As principais emissões de GEE decorrentes desse processo são das próprias matérias-primas ($CH_4 e CO_2$).

Os fatores de emissão aplicados para todo o período são aqueles apresentados pelo IPCC para a utilização da metodologia *Tier 1*: 0,267 tCO₂ e 2,3kgCH₄/t metanol. As emissões associadas a esse processo produtivo não foram alocadas em UFs.

2.3.7 Produção de etileno

De modo geral o etileno é produzido através do craqueamento de matérias-primas petroquímicas. Essa rota de produção gera ainda propileno, butadieno e compostos aromáticos. No Brasil é utilizada a nafta, em geral, na reação de craqueamento; em 2004 passou a ser utilizado

¹⁵ Na rota do carvão vegetal, as emissões não são contabilizadas por se tratar de uma fonte renovável de carbono.

o gás natural como outra fonte através do processo de pirólise. Nessa rota são emitidos CO₂, CH₄ e COVNM.

Os fatores de emissão de CO₂ e de CH₄ utilizados são os mesmos apresentados pelo Relatório de Referência. Segundo o relatório, são fatores *Tier 1* apresentados nas *Guidelines* 2006 do IPCC como fatores default, com as correções apropriadas para o processo de craqueamento a vapor existente na América do Sul; além das variações temporais do fator relacionado às emissões de metano.

Até 2005 os fatores utilizados eram 1,73 kg CO_2 /t etileno e 3 kg CH_4 /t etileno. A partir de 2006 o fator de CO_2 passou a ser 1,74 kg CO_2 /t etileno; já os de metano foram 3,54 kg CH_4 /t etileno para o período 2006-2009 e 3,25 kg CH_4 /t etileno para os anos posteriores. As emissões de compostos orgânicos voláteis não-metânicos (COVNM) são estimadas através dos fatores default das *Guidelines 1996*: 1,4 kgCOVNM/t etileno.

As emissões associadas a esse processo produtivo não foram alocadas em UFs.

2.3.8 Produção de dicloroetano e cloreto de vinila

Plantas de produção de dicloroetano e cloreto de vinila (MVC¹⁶) podem operar através do processo balanceado entre os dois produtos, por meio da rota tecnológica de cloração direta e oxicloração do eteno. A conversão de eteno não é igual a 100% e a fração não-reagida é convertida a CO₂ antes de ser emitida à atmosfera de modo a atender exigências de controle ambiental, gerando emissões de COVNM, CO₂ e CH₄.

Os fatores de emissão de CO_2 e CH_4 empregados são baseados na produção de cloreto de vinila através da metodologia *Tier 1* das *Guidelines 2006* e apresentados no Relatório de Referência: $0.294 \ tCO_2/tMVC$ e $0.0226 \ kgCH_4/tMVC$.

Emissões de COVNM são estimadas em separado para cada um dos produtos segundo o Relatório de Referência: 8,5 kgCOVNM/tMVC (definido pelos autores do relatório e pela Abiquim) e 2,2 kgCOVNM/t dicloroetano (*Guidelines 1996*).

As emissões associadas a esse processo produtivo não foram alocadas em UFs.

2.3.9 Produção de óxido de eteno

No Brasil, o óxido de eteno é produzido por meio oxidação direta do eteno com ar. Nesse processo são emitidos dióxido de carbono e metano.

A produção física anterior a 2011 foi levantada conforme apresentado na Tabela 3. A partir de 2011 a produção dessa substância não foi mais divulgada nos anuários da Abiquim. Dessa forma, sua produção foi mantida constante no período 2011-2014, por simplificação.

O fator de emissão de dióxido de carbono foi estimado pelo método Tier 2 das *Guidelines 2006* do IPCC (balanço de massa do carbono no processo produtivo); já as emissões de metano

¹⁶ Monocloreto de vinila.

utilizaram o fator default. O Relatório de Referência apresenta os seguintes valores: $0.52 \text{ tCO}_2/\text{t}$ óxido de eteno e $1.79 \text{ kgCH}_4/\text{t}$ óxido de eteno

As emissões associadas a esse processo produtivo não foram alocadas em UFs.

2.3.10 Produção de acrilonitrila

Por meio da tecnologia Sohio de reação catalítica entre propeno, amônia e ar são produzidos acrilonitrila (produto principal), acetonitrila e ácido cianídrico (produtos secundários). A chamada amoniação do propeno não possui rendimento 100% na produção da acrilonitrila. Desta forma, uma parcela é convertida para dióxido de carbono ou para outros hidrocarbonetos (metano e COVNM) através da oxidação direta.

As estimativas de acrilonitrila são similares às de óxido de eteno no que diz respeito às fontes de informação da produção física (2011-2014 foram estimados com a mesma produção de 2010, por simplificação na indisponibilidade dos dados) e aos fatores de emissão de CO₂ e metano (Tier 2 e Tier 1, respectivamente). As emissões de COVNM foram estimadas por meio de fatores Tier 1 apresentados nas Guidelines 1996 do IPCC.

Os valores indicados pelo Relatório de Referência e utilizados nas estimativas do SEEG são: 0,2325 tCO₂/t acrilonitrila; 0,18 kgCH₄/t acrilonitrila e 1 kgCOVNM/t acrilonitrila.

A produção nacional dessa substância é feita exclusivamente na Bahia; sendo assim, todas as emissões nacionais foram alocadas nesse Estado.

2.3.11 Produção de coque de petróleo calcinado

O coque de petróleo calcinado é utilizado como anodo na eletrólise da alumina para a produção de alumínio metálico. Este coque calcinado é produzido a partir de um processo de transformação do coque verde de petróleo grau anodo. Trata-se de um processo térmico que reduz o teor de matéria volátil do coque original. Essa matéria volátil é constituída essencialmente por metano, que é emitido à atmosfera¹⁷.

A produção física foi levantada conforme a Tabela 3 para o período 1990-2014 e mantida constante a produção de 1990 para o período entre 1985-1989, por simplificação na indisponibilidade de dados.

O fator de emissão utilizado é proveniente das *Guidelines 1996* do IPCC e o valor apresentado no Relatório de Referência é 0,5 kgCH₄/t coque.

O único Estado produtor de coque de petróleo calcinado é São Paulo. Assim, todas as emissões nacionais foram alocadas ali.

 $^{^{17}}$ Coque verde de petróleo grau anodo \Rightarrow CALCINAÇÃO \Rightarrow Coque de petróleo calcinado + CH₄

2.3.12 Produção de negro-de-fumo

A produção nacional de negro-de-fumo é baseada na oxidação parcial de resíduos aromáticos e óleo combustível pesado (fontes de hidrocarbonetos). É produzido um gás de purga destinado à geração de calor e, então, são emitidos CO_2 , CH_4 e NO_x .

Os fatores de emissão de CO_2 foram estimados através do método *Tier 2*, CH_4 através do *Tier 1* e NOx por meio de fator de emissão determinado pela Abiquim no âmbito da 2° Comunicação Nacional. O Relatório de Referência apresenta os seguintes valores: 1,618 t CO_2 /t negro-de-fumo, 0,06 kg CH_4 /t negro-de-fumo e 0,14 t CO_2 /kg negro-de-fumo.

O levantamento da produção física segue a Tabela 3 para o período até 2010; a partir de 2011 a produção física de 2010 foi fixada, por simplificação na indisponibilidade de dados. As emissões associadas a esse processo produtivo não foram alocadas em UFs.

2.3.13 Produção de ácido fosfórico

A produção do ácido é feita através da reação entre a rocha fosfática e o ácido sulfúrico. Essa reação faz com que o carbonato de cálcio presente na rocha reaja com o ácido e forme CO_2 e gesso agrícola.

Os fatores de emissão de CO_2 foram elaborados através de composições químicas médias das rochas fosfáticas nacionais e é apresentado no Relatório de Referência como 0,02 kg CO_2 /t rocha fosfática.

A produção física foi levantada pelo relatório de referência da comunicação nacional para o período entre 1990 e 2012. Por simplificação, a produção de 2012 foi mantida constante para 2013 e 2014. Para o período anterior a 1990, ela foi estimada através da tendência da evolução temporal da produção física no período 1990-2005, como forma provisória de estimar essa variável devido à ausência de informações mais precisas para o período. As emissões associadas a esse processo produtivo não foram alocadas em UFs.

2.3.14 Produção de outros produtos químicos

Uma série de outros produtos tiveram as emissões de COVNM relacionadas a sua produção estimadas através de fatores de emissão apresentados nas Guidelines 1996 do IPCC em geral. Os produtos que tiveram essas emissões estimadas são: resinas ABS, anidrido ftálico, borracha de butadieno estireno (SBR), estireno, etilbenzeno, formaldeído, policloreto de vinila (PVC), poliestireno, polietileno (PEAD, PEBD e PELDB), polipropileno e propeno.

Para alguns casos foram utilizados fatores derivados de tecnologias sugeridas pelo projeto Corinair, o inventário europeu de emissões (anidrido ftálico, policloreto de vinila e poliestireno) ou determinados pela Abiquim e pelos autores do Relatório de Referência (borracha de butadieno estireno - SBR).

A produção física desses produtos foi levantada conforme a Tabela 3 e através de simplificações no caso de ausência de dados (regressões lineares ou produções fixadas para o período conhecido):

- Resinas ABS: produção física entre 1985 e 1989 estimada por interpolação linear dos valores de 1984 e 1990, produção física de 2011 mantida constante para o período entre 2012 e 2014;
- Anidrido ftálico, borracha de butadieno estireno e etilbenzeno: produção física de 2011 mantida constante para o período entre 2012 e 2014;
- Polietileno desagregado por tipo: para os anos de 1970, 1971, 2012 e 2013 só estava disponível a produção total de polietileno. A desagregação foi realizada através das proporções dos anos mais próximos disponíveis (1972 e 2011, respectivamente).

As emissões associadas a esse processo produtivo não foram alocadas em UFs.

2.4 Emissões de HFCs

Uma determinada gama de hidrocarbonetos halogenados, ou halocarbonos¹⁸ é utilizada como fluidos refrigerantes¹⁹ em equipamentos de refrigeração ou como gás em aerossóis²⁰. Tratam-se dos compostos que contém cloro (Cl) e flúor (F). Os hidrofluorcarbonos (HFCs) passaram a ser usados em substituição aos clorofluorcarbonos (CFCs) e hidroclorofluorcarbonos (HCFCs), após as determinações de restrição de uso destes dois últimos pelo Protocolo de Montréal, em 1987.

As emissões de HFCs podem ocorrer durante o processo produtivo de halocarbonos e durante a montagem, o uso ou o descarte de produtos que contenham HFCs.

2.4.1 Produção de halocarbonos

Não há produção de HFCs no Brasil, porém a produção de HCFC-22 tem como subproduto o HFC-23, gás de efeito estufa inventariado pelo 3º Inventário Nacional. O relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção e Consumo de HFCs e SF₆ – Relatório de Referência (MCTI, 2014) estima as emissões desse gás com base na produção de HCFC-22 e num fator de emissão de 0,04 tHFC-23/tHCFC-22.

A produção de HCFC-22 entre 1990 e 1999 foi obtida no Relatório de Referência. A partir de 2000 esse gás não foi mais produzido no país e não foi possível obter dados confiáveis a respeito da produção dele para períodos anteriores a 1990.

²⁰ Aerossol é uma mistura de substâncias líquidas com gás em um recipiente, onde o gás impulsiona o líquido para fora quando um mecanismo é ativado (por exemplo: spray).

¹⁸ Halocarbono é qualquer hidrocarboneto (composto químico formado exclusivamente por átomos de hidrogênio e carbono) combinado com qualquer dos 5 elementos da família VIIA da tabela periódica (flúor – F, cloro – Cl, bromo – Br, iodo – I, astato – At).

¹⁹ Fluidos refrigerantes usados no ciclo termodinâmico de compressão de vapor (Rankine reverso).

Por falta de informações mais precisas a respeito da produção de HCFC-22, as emissões de HFC-23 não foram alocadas nas unidades da federação.

2.4.2 Consumo de halocarbonos

O relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção e Consumo de HFCs e SF₆ – Relatório de Referência (MCTI, 2014) estima as emissões pelo consumo de halocarbonos, ou seja, aquelas emissões que ocorreriam durante as etapas de montagem, operação (uso) e sucateamento de produtos contendo HFCs por meio da metodologia Tier 1b recomendada pelo IPCC. Essa metodologia estima as emissões a partir de uma abordagem de "emissões potenciais", considerando fluxos "bulk" de importação e exportação dos gases e fluxos dos gases contidos em equipamentos importados e exportados.

O relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção e Consumo de HFCs e SF₆ – Relatório de Referência (MCTI, 2014) apresenta as emissões potenciais dos gases HFC-32, HFC-125, HFC-134a, HFC-143a, HFC-152a para o período entre 1990 e 2010 e essas emissões são reportadas pelo SEEG. A abordagem de "emissões potenciais" não permitiu a alocação das emissões nas unidades da federação (UFs).

Para os anos anteriores a 1990, assumiu-se que o consumo desses gases não foi relevante; dessa forma, as emissões reportadas para esses anos são nulas. Na ausência de informações de importação de HFCs para o período entre 2011 e 2014, foram adotadas simplificações: as emissões referentes a esse período foram estimadas a partir de extrapolação de funções lineares²¹ conforme apresentado nas equações a seguir, nas quais **X** indica o ano de estimativa das emissões.

$$E_{HFC-32}^{X} = X * 14,75 - 29.549$$

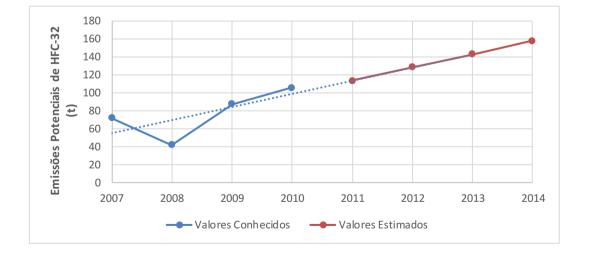
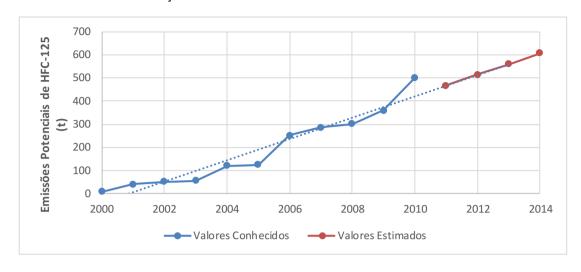



Gráfico 1: Evolução das emissões de HFC-32 e tendência estimada

²¹ Esse método segue o apresentado no relatório **Estimativas anuais de emissões de gases de efeito estufa no Brasil (MCTI, 2014).**


$$E_{HFC-125}^{X} = X * 46,31 - 92.656$$

Gráfico 2: Evolução das emissões de HFC-125 e tendência estimada

$$\mathbf{E}_{HFC-134a}^{X} = \mathbf{X} * \mathbf{412}, \mathbf{55} - \mathbf{823}.371$$

Gráfico 3: Evolução das emissões de HFC-134a e tendência estimada

$$E_{HFC-143a}^{X} = X * 43,564 - 87.174$$

Emissões Potenciais de HFC-500 400 300 200 100 2000 2002 2004 2006 2008 2010 2012 2014 Valores Conhecidos Valores Estimados

Gráfico 4: Evolução das emissões de HFC-143a e tendência estimada

Em particular, as emissões foram consideradas nulas para o HFC-152a, pois o Relatório de Referência reporta 2006 como o último ano em que ocorreram emissões.

2.5 Uso de SF₆ em equipamentos elétricos

Além da aplicação na proteção do magnésio fundido²², o hexafluoreto de enxofre (SF₆) é um gás utilizado como isolante em equipamentos elétricos (chaves e disjuntores de grande porte) e as emissões desse gás ocorrem devido a perdas durante a manutenção e o descarte desses equipamentos.

As emissões reportadas pelo SEEG para o período entre 1990 e 2005 são as mesmas publicadas no **Inventário Brasileiro de Emissões Antrópicas por Fontes e Remoções por Sumidouros de Gases de Efeito Estufa não Controlados pelo Protocolo de Montreal – Parte 2 (MCTI, 2010)**. Segundo o Inventário, essas emissões foram estimadas através de um fator *default* para os equipamentos e a capacidade instalada foi levantada por meio de uma pesquisa coordenada pela Aneel (Agência Nacional de Energia Elétrica) e pelo MCTI.

Para o período entre 2006 e 2010 as emissões foram obtidas do relatório **Estimativas anuais** de emissões de gases de efeito estufa no Brasil (MCTI, 2013)²³ e, conforme metodologia utilizada no relatório, as emissões para o período entre 2011 e 2014 foram estimadas através de regressão linear das emissões entre 2001 e 2005. O Gráfico 5 ilustra as estimativas e as emissões reportadas pelo SEEG.

-

²² Como visto na seção 2.1.3.

²³ Não foram utilizadas as estimativas apresentadas no relatório **Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção e Consumo de HFCs e SF₆ – Relatório de Referência (MCTI, 2014)**, mais atual, pois o mesmo não detalha as emissões reais de SF₆ decorrentes do uso em equipamentos elétricos para o período entre 1990 e 2010.

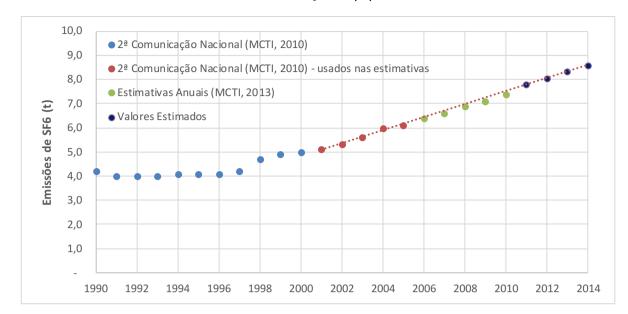


Gráfico 5: Estimativas das emissões de SF₆ em equipamentos elétricos

Devido à ausência de informações mais detalhadas a respeito do parque instalado de SF_6 em equipamentos elétricos, não foram feitas estimativas para o período entre 1970 e 1989 e tampouco foi possível alocá-las nas UFs.

2.6 Uso não energético de combustíveis e uso de solventes

Dados de uso não energético de combustíveis são apresentados no BEN, que os designa como "Consumo Final Não Energético". Nas planilhas detalhadas (Matriz 49x47), esses dados são ainda desagregados nas categorias: (i) Matéria-prima da indústria química e (ii) Outros usos. As emissões associadas ao consumo não energético de combustíveis como matéria-prima da indústria química já foram contabilizadas na categoria "Indústria química", conforme exposto no item 2.3 deste relatório e também conforme a metodologia exposta no relatório Emissões de Gases de Efeito Estufa nos Processos Industriais: Indústria Química – Relatório de Referência (MCTI, 2014). Já os fluxos associados a "Outros usos" são apontados pelo Relatório de Referência como responsáveis por duas atividades geradoras de emissões:

- Emissões de CO₂ decorrentes do consumo energético de lubrificantes em motores de dois tempos: estimadas considerando que 20% do fluxo de consumo final não energético de lubrificantes corresponde a essa finalidade e através da metodologia e dos fatores de emissão apresentados no relatório Emissões de Gases de Efeito Estufa por Queima de Combustíveis: Abordagem Bottom-Up - Relatório de Referência (MCTI, 2010).
- Emissões de COVNM decorrentes do consumo não energético de álcool anidro e hidratado, outros não energéticos de petróleo e solventes: considera-se que todo o consumo dessas fontes energéticas é transformado em emissões de compostos orgânicos voláteis não-metânicos; dessa forma os fluxos volumétricos foram apenas

convertidos para massa através da densidade apresentada no BEN e reportados como as emissões provenientes desse consumo.

Todos os fluxos de Consumo Final Não Energéticos explicitados foram obtidos do arquivo "Matrizes 49x47 — 1970 em diante", acessível no site do MME (http://www.mme.gov.br/web/guest/publicacoes-e-indicadores) para o período entre 1970 e 2014. Esses valores de consumo são apresentados no ANEXO G — Consumo Não Energético de Combustíveis.

Devido à ausência de informações mais detalhadas a respeito do consumo não energético desses combustíveis e do uso de solventes, não foi possível alocar as emissões nas UFs.

3. Diferenças do SEEG 2015 em relação ao SEEG 2014

- As emissões associadas ao consumo de combustíveis redutores na produção de ferro-gusa e aço passaram a ser alocadas nos estados de MG, RJ, SP, ES e RS a partir de fatores de alocação obtidos por meio do consumo de carvão vapor 6000, coque de carvão mineral, coque de petróleo e carvão vegetal nesse segmento industrial reportados nos Balanços Energéticos Estaduais dessas unidades da federação;
- As emissões associadas ao consumo de combustíveis redutores na produção de ferroligas passaram a ser alocadas nos estados de MG e SP a partir de fatores de alocação obtidos por meio do consumo de carvão vapor 6000, coque de carvão mineral, coque de petróleo e carvão vegetal nesse segmento industrial reportados nos Balanços Energéticos Estaduais dessas unidades da federação.

4. Qualidade dos dados

Dada a complexidade dos cálculos necessários para consolidar o Sistema de Estimativas de Emissões de Gases do Efeito Estufa – SEEG – e devido à opção de usar apenas dados disponíveis de forma pública e gratuita, considerou-se necessário divulgar uma avaliação da qualidade dos dados. Assim, qualquer usuário ou leitor pode aferir a confiabilidade de cada cálculo e eventualmente contribuir para aumentar a robustez dos dados.

São três avaliações de qualidade dos dados: (A) qualidade das estimativas nacionais no ano mais recente (2014); (B) qualidade da alocação dos dados por estados e (C) qualidade das estimativas no período histórico (1970 a 2014). As seguintes legendas foram utilizadas:

Legenda para Analise de Qualidade das ESTIMATIVAS NACIONAIS 1990-2014

Aspecto		Valores
	1	Tier 1 do IPCC - fatores globais
TIER	2	Tier 2 do IPCC - fatores nacionais ou regionais
	3	Tier 3 do IPCC - fatores especificos por planta
	1	dados existentes para calculo de acordo com Tier do 2o inventário (inclui dados existentes em associações de classe,
EXISTÊNCIA DE DADO DE ATIVIDADE	1	mesmo que não seja publico). Dados que só existem nas empresas ou agentes economicos específicos nào serão
EXISTENCIA DE DADO DE ATIVIDADE	2	dados incompletos
	3	dados não existentes
	1	dados disponíveis de forma pública e gratuita
DISPONIBILIDADE DE DADOS DE ATIVIDADE	2	dados disponíveis com alguma restrição (pago; em local físico especifico, ou disponivel apenas mediante solicitação
	3	dados não disponíveis
	1	fator explícito, com referência
FATORES DE EMISSÃO	2	fator implícito com correlação R2 maior ou igual a 0,7
	3	fator implícito com correlação R2 menor que 0,7
	1	sem necessidade de aprimoramento
NECESSIDADE APRIMORAMENTO	2	necessidade de aprimoramento de método OU obtenção dos dados para cálculo
	3	necessidade de aprimoramento de método E obtenção de dados para calculo
	1	dado confiável; capaz de reproduzir 2o inventario
QUALIDADE GERAL DO DADO	2	dado confiável para estimativa; inventário pode gerar diferenças significativas
	3	dado pouco confiável ou de dificil avaliação

Legenda para Analise de Qualidade da ALOCAÇÃO DE EMISSÕES POR ESTADOS

Aspecto	Valores
	1 Alocação possível de toda emissão nacinal nos estados (não fica resíduo/montante não alocado)
OCORRÊNCIA DE ALOCAÇÃO	2 Alocação parcialmente possível. Parte das emissões nacionais não foi alocada.
	3 Alocação para os estados não foi possível
	1 Critério de alocação está diretamente relacionado com os fatores de emissão
CRITÉRIO DE ALOCAÇÃO	2 Critério de alocação usa fatores indiretos com alta correlação com os fatores diretos.
	3 Critério de alocação usa fatores indiretos com baixa correlação com fatores diretos.
	dados existentes para calculo de acordo com Tier do 2o inventário (inclui dados existentes em associações de classe,
	1 mesmo que não seja publico). Dados que só existem nas empresas ou agentes economicos específicos nào serão
EXISTÊNCIA DE DADO DE ATIVIDADE	considerados.
	2 dados incompletos
	3 dados não existentes
	1 dados disponíveis de forma pública e gratuita
DISPONIBILIDADE DE DADOS DE ATIVIDADE	2 dados disponíveis com alguma restrição (pago; em local físico especifico, ou disponivel apenas mediante solicitação
	3 dados não disponíveis
	1 fator explícito, com referência
FATORES DE EMISSÃO	2 fator implícito com correlação R2 maior ou igual a 0,7
	3 fator implícito com correlação R2 menor que 0,7
	1 sem necessidade de aprimoramento
NECESSIDADE APRIMORAMENTO	2 necessidade de aprimoramento de método OU obtenção dos dados para cálculo
	3 necessidade de aprimoramento de método E obtenção de dados para calculo
~	1 dado confiável; capaz de reproduzir 20 inventario
QUALIDADE GERAL DA ALOCAÇÃO	2 dado confiável para estimativa; inventário pode gerar diferenças significativas
	3 dado pouco confiável ou de dificil avaliação

Legenda para Analise de Qualidade da Estimativas do Período Pré Inventário de Emissões 1970-1989

Aspecto	Valores
OLIALIDADE BELATIVA DO DADO HISTÓRICO	1 Dado de atividade existente/disponível para o respectivo ano e fator de emissão adequado para época
QUALIDADE RELATIVA DO DADO HISTÓRICO	2 Dados de atividades estimados pelo projeto ou correlação com outros dados [e/ou] fatores de emissão inadequados para
	3 Dados de atividades estimados e fatores de emissão inadequados

Tabela 4: Quadro de Qualidade das estimativas nacionais em 2014

s/i s/i 1 3 2 1 1 2	Ø Ø Ø 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Existência do Dado	Disponibilidade do Dado	Fator de Emissão	Necessidade de Aprimoramento	Qualidade Geral do Dado	% do total das Emissões 100% 3,47%	Emissões em 2014, em tC02e (GWP) 101.149.185 3.514.773		Proporção com Boa Qualidade (1 e 2)
s/i 1 3 2 1	Ø 1 1 1 1	1 1 1 1 1	3	1	1		,			85,3%
s/i 1 3 2 1	Ø 1 1 1 1	1 1 1 1 1 1 1	1 3 1	3			3,47%	2 514 772		
s/i 1 3 2 1	Ø 1 1 1 1		3 1 3	3				5.514.775		I
1 3 2 1 1	1 1 1 1	1 1 1 1	3 1 3	3		1	0,09%	90.395	0,09%	0,099
3 2 1 1	1 1 1 1		3			3	0,04%	42.000	0,00%	0,009
1	1 1 1		3			1	0,04%	36.348	0,04%	0,049
1	1			1		1	1,78%	1.804.864	1,78%	1,789
1	1		3	1	2	3	0,15%	156.657	0,00%	0,009
1 1 2 2	1		1	1		1	0,23%	236.064	0,23%	0,239
1 2 2	4		1	1	2	2	0,20%	206.195	0,00%	0,209
	1		3	1	2	3	0,01%	5.103	0,00%	0,009
	1		3	1	2	3	0,64%	647.801	0,00%	0,009
	1		3	1	2	3	0,02%	22.329	0,00%	0,009
	1		3	1	2	3	0,04%	40.300	0,00%	0,009
	1		3	1		1	0,22%	226.717	0,22%	0,229
	1		3	1		1	0,00%	0	0,00%	0,009
1	1		1	1		1	0,00%	0	0,00%	0,009
1	1		2	1	2	3	0,00%	0		0,009
1	1		2	1	2	3	0,00%	0		0,009
1	1		2	1	2	3	0,00%	0	0,00%	0,009
1	1		1	1		1	0,00%	0		0,009
1	1		2	1	2	3	0,00%	0	0,00%	0,009
1	1		1	1		1	0,00%	0		0,009
1	1		1	1		1	0,00%	0		0,009
1	1		1	1		1	0,00%	0		0,009
1	1		2	1	2	1	0,00%	0		0,009
1	1		2	1	2	1	0,00%	0		0,009
1	1		2	1	2	1	0,00%	0		0,009
1	1		1	1		1	0,00%	0		0,009
1	1		1	1		1	0,00%			0,009
						•				.,
3	1		2	2	2	2	25,35%			25,359
							6,41%			1
s/i	Ø	2	1	1	2	2	5,31%			5,319
s/i	Ø	2	1	1	2	2	0,43%			0,439
,		2	1	1	2	2				0,679
							0,13%	r		0,077
s/i	Ø	2	1		2	2	0.11%			0,119
		2			2	2				0,029
•		1	2			1				0,439
							43.39%			
							41,33%			ı
s/i	Ø	1				1	40,47%			40,479
,	Ø					1	0.22%			0,229
s/i	ø					1				0,659
										0,037
2	1		3	2	3	2				1,049
2	1		3	2	3	2				0,859
								•		0,037
s/i	Ø	1	.3	1	3	3				0,009
3		1	2	1	1	1				0,00
s/i			1			1				0,00
•						1				5,55
2		3	3	1	3	2				
				-						0,009
	Ψ.									
	2		- 1	1	3		0,66%	205.301		0,669
	s/i s/i s/i s/i s/i s/i s/i s/i	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 s/i Ø 2 1 s/i Ø 3 3 Ø 4 3 s/i Ø 4 3 s/i Ø 4 3 s/i Ø 5/i Ø 5 2 1 3 3 3 Ø 5 s/i Ø 6 4 3 3 3 Ø 6 5 s/i Ø 7 1 1 3 3 3 Ø 7 2 5/i Ø 7 1 1 3 3 3 Ø 7 2 5/i Ø 7 1 1 3 3 3 Ø 7 3 2 5/i Ø 7 1 1 3 3 3 Ø 7 3 2 5/i Ø 7 1 1 3 3 3 Ø 7 3 2 5/i Ø 7 1 1 5/i Ø 7 1 5	1 1 1 2 2 2	1 1 2 2 2 2 2 5/i Ø 2 1 1 2 2 5/i Ø 2 1 1 2 2 2 5/i Ø 2 1 2 2 5/i Ø 2 1 2 2 5/i Ø 1 3 3 2 3 3 5/i Ø 1 3 3 2 3 3 5/i Ø 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 2 2 2 2 2 2 2 5 5 6 5 6 5 6 5 6 5 6 5 6	1 1 0,00% 32,32% 32.32%	1 1 0,00% 0 0 32,32% 32,686,880 3 1 2 2 2 2 2 2,555% 25,642,829 6,41% 6,482,419 5/i Ø 2 1 2 2 2 0,43% 433,134 5/i Ø 2 2 2 2 0,67% 662,718 0,13% 131,546 5/i Ø 2 2 2 2 0,11% 108,106 5/i Ø 2 2 2 2 0,02% 23,339 5/i Ø 2 2 2 2 0,02% 643,39% 50,388,130 5/i Ø 1 2 1 0,43% 40,47% 40,931,567 5/i Ø 1 1 1 1 1 1 40,47% 40,931,567 5/i Ø 1 1 3 2 3 2 1,04% 10,505,931 2 1 3 2 3 2 1,04% 10,505,931 2 1 3 3 2 3 2 1,04% 10,505,931 2 1 3 3 2 3 2 1,04% 10,505,931 3 Ø 1 2 0,00% 91,560 5/i Ø 3 3 3 3 0,09% 91,560 5/i Ø 5 3 3 3 3 0,09% 91,560 5/i Ø 5 5,55% 5,615,334 5/i Ø 5 5,55% 5,615,334	1 1 0,00% 0,00% 32,32% 32,686,880 32,686,880 32,32% 32,686,880 44,386 6,482,419 5,71

Tabela 5: Quadro de Qualidade das estimativas nacionais entre 1970 e 2014

	1970-1971	1972-1974	1975-1979	1980 198	1982-1984	1985-1986	87-19 19	990-2005 2	006-2010	2011 2012	2013 20)14 G	alidade eral do Dado	% do total das Emissões	Emissões (ton GWP) em todo período	Proporção com Boa Qualidade (1)	Proporção o Boa Qualida (1 e 2)
Processos Industriais									The state of the s	,					2.620.031.802	55,2%	94,7%
Indústria Química														10,48%	274.587.344		
Produção de Ácido Fosfórico	2	2	2	2 2	2	2	2				1	2	2	0,12%	3.266.153	0.00%	0,13
Produção de Carbureto de Cálcio	3	3	3	3 3	3	3	3	3	3	3 3	3	3	3	0,03%	777.000	0,00%	0,00
Produção de Metanol	1	1	1	1 1	1	1	1	1	1	1 1	1	2	1	0,09%	2.284.152		0,0
Produção de Amônia	1											2		2.28%	59,774,617	2.28%	2.2
Produção de Óxido de Eteno	1									2 2	2	2	2	0,16%	4.204.001	0,00%	0,1
Produção de Eteno	1										1	2	1	0,20%	5.212.709	0,20%	0,2
Produção de Cloreto de Vinila	1									1 2	2	2	2	0,19%	5.108.092	0.00%	0,1
Produção de Coque de Petróleo Calcinado	1					2	2				1	2	2	0,00%	95.889	0,00%	0,0
Produção de Negro-de-fumo	1									2 2	2	2	2	0,64%	16.650.110	0,00%	0,0
Produção de Acrilonitrila	1									2 2	2	2	2	0,02%	637.082	0,00%	0,0
Produção de Ácido Adípico	1									2 2	2	2	2	5,78%	151.328.462	0,00%	5,7
Produção de Ácido Nítrico	2	2	2	2 2	2	2	2			2 2	2	2	2	0.86%	22.570.886	0.00%	0.8
Produção de Caprolactama	1												1	0,10%	2.678.191	0,10%	0,:
Produção de Dicloroetano	2	2	2									2		0.00%	0		0.0
Produção de ABS	1					2	2			1 2	2	2	2	0.00%	0		0.0
Produção de Anidrido Ftálico	1									1 2	2	2	2	0,00%	0		0.0
Produção de Borracha de Butadieno Estireno (SBR)	2		2	2 1						1 2	2	2	2	0,00%	0		0.
Produção de Estireno	1									1 2	2	2	2	0,00%	0		0,
Produção de Etilbenzeno	2	2	2	2 2						1 2	2	2	2	0,00%	0		0,
Produção de Formaldeído	1										1	2	1	0.00%	0		0.
Produção de PVC	1											2		0.00%	0		0.
Produção de Poliestireno	1											2		0,00%	0		0,
Produção de Polietileno PEAD	1									1 2	2	2	2	0,00%	0		0,
Produção de Polietileno PEBD	1									1 2	2	2	2	0.00%	0		0,
Produção de Polietileno PELBD	1									1 2	2	2	2	0,00%	0		0,
Produção de Polipropileno	1									1 1	1	2	1	0,00%	0		0,
Produção de Propeno	- 1											2		0,00%	0		0,
rodutos Minerais	-	1	1		<u> </u>	1	1	1	1		1	2	1	29,19%	764.781.705	0,0076	0,
Produção de Cimento	2	2	2	2 2	2	2	2		1	2 2	2	2	2	22,01%	576.678.682	0,00%	22,
Produção de Cal	2	2	2	2 2	2	2	2	T	T	2 2	2	2	2	6,71%	175.800.699	0,00%	22,
Cal Calcítica	2	2	2	2 2	2	2	2				2	2	2	5,12%	134.210.532	0.00%	5,
Cal Calcitica Cal Dolomitica	2	2	2	2 2	2	2	2				2	2	2	0.62%	16.143.826	0,00%	0.
Cal Magnesiana	- 2	2	2	2 2	2	2	2				2	2	2	0,62%	25.446.341	0,00%	0,
Produção de Vidro	2	2	2	2 2	2	2	2	1	1	1 1	2	2	2	0,97%		0,00%	U,
Consumo de Calcário	2	2	2	2 2	2	2	2			1 1	2	2	2	0,12%	3.197.137 2.627.457	0,00%	0,
Consumo de Calcario Consumo de Dolomita	_ 2	2	2	2 2	2	2	2			1 2	2	2	2	0,10%		0,00%	0,
	2	2	2	2 2	2	2	2			1 2	2	2	2		569.680		
Consumo de Barrilha	1	1	1	1 1	1	1	1	1	1	1 1	1	2	1	0,35%	9.105.187	0,35%	0,
Produção de Metais														54,30%	1.422.795.545		
Produção de Ferro Gusa e Aço														46,61%	1.221.162.634		
Consumo de Combustíveis Redutores	1	1	1	1 1	1	1	1				1	1	1	44,24%	1.159.026.689	44,24%	44,
Consumo de Calcário	2	2	2	2 2	2	2	2				2	2	2	1,48%	38.658.639	0,00%	1,
Consumo de Dolomita	2	2	2	2 2	2	2	2	1	1	1 1	2	2	2	0,90%	23.477.306	0,00%	0,
Produção de Aluminío														4,44%	116.310.888		
Tecnologia Soderberg	2	2	2	2 2	2	2	2							2,24%	58.624.810	2,24%	2,
Tecnologia Prebaked Anode	2	2	2	2 2	2	2	2	1	1	1 1	1	1	1	2,20%	57.686.077	2,20%	2,
Produção de Magnésio														0,30%	7.884.824		
Consumo de Dolomita	1						2	1	1	2	2	2	2	0,06%	1.662.459	0,00%	0,
Uso de SF6	1						2	1	1	2 2	2		2	0,24%	6.222.365	0,00%	0,
Produção de Ferroligas	1													0,84%	22.087.294	0,84%	0,
Produção de Outros Não Ferrosos	1	1	1	1 1	1	1	1	1	1	1 1	1	1	1	2,11%	55.349.906	2,11%	2,
missões de HFCs	1	- 1	- 1	1 1	1	1	1	1	1	3 3	3	3	3	5,32%	139.355.221	0,00%	0,
lso de SF6 em Equipamentos Elétricos	3	3	3	3 3	3	3	3	1	2	2 2	2	2	2	0,13%	3.406.706	0,00%	0,
Jso Não-Energético de Combustíveis e Uso de Solventes	1	1	1	1 1	1	1	1	1	1	1 1	1	1	1	0,58%	15.105.281	0,58%	0,
Total Geral														100%	2.620.031.802	55.2%	94.7

Tabela 6: Quadro de Qualidade dos Dados de Alocação nas UFs em 2014²⁴

	Ocorrencia	Critério de	Nível d	e Atividade	Necessidade de	Qualidade	% do total das	Emissões em 2014,	Proporção com Boa	Proporção com Boa
	de alocação		Existência do Dado	Disponibilidad e do Dado	Aprimoramento	Geral da Alocação	Emissões	em tCO2e (GWP)	Qualidade (1)	Qualidade (1 e 2)
Processos Industriais							100%	101.149.185	2,0%	70,8%
Indústria Química							3,47%	3.514.773		
Produção de Ácido Fosfórico	3	n/a	3	3	2	n/a	0,09%	90.395	0,00%	0,009
Produção de Carbureto de Cálcio	3	n/a		3	3	n/a	0,04%	42.000	0,00%	0,00%
Produção de Metanol	3	n/a	1	3	2	n/a	0,04%	36.348	0,00%	0,00%
Produção de Amônia	1	2	1	3	2	2	1,78%	1.804.864	0,00%	1,789
Produção de Óxido de Eteno	3	n/a		3	2	n/a	0,15%	156.657	0,00%	0,009
Produção de Eteno	3	n/a		3	2	n/a	0,23%	236.064	0,00%	0,009
Produção de Cloreto de Vinila	3	n/a	1	3	2	n/a	0,20%	206.195	0,00%	0,009
Produção de Coque de Petróleo Calcinado	1	1	1	1	2	1	0,01%	5.103	0,01%	0,019
Produção de Negro-de-fumo	3	n/a	1	3	2	n/a	0,64%	647.801	0,00%	0,009
Produção de Acrilonitrila			1	1	2	1	0,02%	22.329	0,02%	0,02%
Produção de Ácido Adípico		1	1	1	2	1	0,04%	40.300	0,04%	0,04%
Produção de Ácido Nítrico		2	1	3	2	2	0,22%	226.717	0,00%	0,22%
Produção de Caprolactama	1			1	2	1	0,00%	0	0,00%	0,00%
Produção de Dicloroetano	3	n/a	1	3	2	n/a	0,00%	0	0,00%	0,00%
Produção de ABS	1		1	1	2	1	0,00%	0	0,00%	0,00%
Produção de Anidrido Ftálico	3	n/a	1	3	2	n/a	0,00%	0	0,00%	0,00%
Produção de Borracha de Butadieno Estireno (SBR)	3	n/a	1	3	2	n/a	0,00%	0	0,00%	0,00%
Produção de Estireno	3	n/a		3	2	n/a	0,00%	0	0,00%	0,00%
Produção de Etilbenzeno	3	n/a	1	3	2	n/a	0,00%	0	0,00%	0,00%
Produção de Formaldeído	3	n/a		3	2	n/a	0,00%	0	0,00%	0,00%
Produção de PVC	3	n/a		3	2	n/a	0,00%	0	0,00%	0,00%
Produção de Poliestireno	3	n/a		3	2	n/a	0,00%	0	0,00%	0,00%
Produção de Polietileno PEAD	3	n/a		3	2	n/a	0,00%	0	0,00%	0,00%
Produção de Polietileno PEBD	3	n/a		3	2	n/a	0,00%	0	0,00%	0,00%
Produção de Polietileno PELBD	3	n/a		3	2	n/a	0,00%	0	0,00%	0,00%
Produção de Polipropileno	3	n/a		3	2	n/a	0,00%	0		0,00%
Produção de Propeno	3	n/a		3	2	n/a	0,00%	0		0,00%
Produtos Minerais							32,32%	32.686.880		5,55,
Produção de Cimento	2	2	2	1	2	2	25,35%	25.642.829		25,35%
Produção de Cal							6,41%	6.482.419		
Cal Calcítica	3	n/a	3	3	2	n/a	5,31%	5.366.567	0,00%	0,00%
Cal Dolomitica	3	n/a	3		2	n/a	0,43%	433.134		0,00%
Cal Magnesiana	3	n/a	3		2	n/a	0,67%	682.718		0,00%
Produção de Vidro		, =			_	, =	0,13%	131.546	0,0070	0,007
Consumo de Calcário	3	n/a	3	3	2	n/a	0,11%	108.106	0,00%	0,00%
Consumo de Dolomita	3	n/a	3	3	2	n/a	0,02%	23.439		0,00%
Consumo de Barrilha	. 3	n/a	3	3	2	n/a	0,43%	430.086		0,00%
Produção de Metais	J	11/ 0			-	11/ G	49,82%	50.389.130		0,007
Produção de Ferro Gusa e Aço							41,33%	41.804.310		
Consumo de Combustíveis Redutores	2	2	2	2	2	2	40,47%	40.931.567	0,00%	40,47%
Consumo de Combustiveis Redutores Consumo de Calcário	3	n/a	1	2	3	n/a	0,22%	217.822		0,00%
	. 3			2	3	n/a	0,65%			,
Consumo de Dolomita	3	n/a	Т	3	3	11/ d	1,88%	654.921	0,00%	0,00%
Produção de Aluminío	4			2				1.905.781		
Tecnologia Soderberg				2			1,04%	1.050.593		1,04%
Tecnologia Prebaked Anode	1	1	1	2	1	1	0,85%	855.188		0,85%
Produção de Magnésio							0,09%	91.560		
Consumo de Dolomita				2			0,09%	91.560		0,09%
Uso de SF6	1			2	1	1	0,00%	0		0,00%
Produção de Ferroligas	2	1		2	2	2	0,96%	972.144		0,969
Produção de Outros Não-Ferrosos	3	n/a	1	2	3	n/a	5,55%	5.615.334		0,009
Emissões de HFCs	3	n/a	3			n/a	13,53%	13.688.577		0,009
Uso de SF6 em Equipamentos Elétricos	3	n/a	3	3	3	n/a	0,20%	205.301		0,00%
Uso Não-Energético de Combustíveis e Uso de Solventes	3	n/a		2		n/a	0,66%	664.524	0,00%	0,00%

As tabelas aqui apresentadas podem ser melhor visualizadas em suas versões em planilha Excel, disponibilizadas na plataforma web, possuindo comentários explicando as razões para classificações (2) e (3) de cada dado.

_

²⁴ Outros Produtos Químicos: anidrido ftálico, borracha de estireno butadieno (SBR), estireno, etilbenzeno, formaldeído, PVC, poliestireno, polietileno (PEAD, PEBD e PELBD), polipropileno e propeno.

5. Resultados

Tabela 7: Emissões nacionais de CO₂e (GWP) por atividade (ktCO₂e)

BR	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Emissões de HFCs	-		-	-	1.408	2.168	2.270	4.365	12.392	11.165	12.006	12.847	13.689
Indústria Química	2.225	4.069	6.283	6.100	5.798	8.095	8.984	11.231	3.521	3.751	3.481	3.515	3.515
Produção de Ácido Adípico	1.925	2.999	4.456	3.178	2.675	4.675	5.428	7.279	40	40	40	40	40
Produção de Ácido Fosfórico	26	32	41	52	62	86	104	125	112	107	90	90	90
Produção de Ácido Nítrico	115	471	541	519	561	636	648	685	248	243	237	227	227
Produção de Acrilonitrila	-	-	12	17	18	19	21	20	22	22	22	22	22
Produção de Amônia	42	299	648	1.691	1.683	1.785	1.663	1.934	1.739	1.995	1.758	1.805	1.805
Produção de Caprolactama	-	-	65	79	78	98	104	94	-	-	-	-	-
Produção de Carbureto de Cálcio	-	-	-	-	-	4	51	41	42	42	42	42	42
Produção de Cloreto de Vinila	14	30	76	95	141	115	125	173	214	206	206	206	206
Produção de Coque de Petróleo Calcinado	-	-	-	2	2	3	3	3	5	5	5	5	5
Produção de Eteno	1	19	46	84	97	122	170	175	229	218	222	236	236
Produção de Metanol	5	10	40	49	53	65	67	86	65	67	53	36	36
Produção de Negro-de-fumo	98	193	296	251	355	399	457	451	648	648	648	648	648
Produção de Óxido de Eteno	-	15	63	82	71	90	143	165	157	157	157	157	157
Produção de Metais	6.181	8.907	17.673	27.194	28.764	38.487	43.148	48.829	50.130	54.876	52.724	49.646	50.389
Produção de Alumínio	254	548	1.178	2.342	3.824	4.195	3.180	3.387	3.101	2.863	2.886	2.606	1.906
Tecnologia Prebaked Anode	-	-	-	778	2.111	2.598	1.859	1.506	1.531	1.549	1.467	1.368	1.051
Tecnologia Soderberg	254	548	1.178	1.565	1.712	1.597	1.321	1.881	1.570	1.314	1.419	1.238	855
Produção de Ferro Gusa e Aço	5.728	7.993	15.421	23.741	24.028	32.408	37.896	42.685	41.876	45.364	43.289	40.634	41.804
Consumo de Calcário	274	422	778	1.038	1.044	882	1.086	1.015	1.609	1.835	1.625	218	218
Consumo de Combustíveis Redutores	5.325	7.374	14.277	22.215	22.494	30.796	36.282	40.810	39.025	42.279	40.843	39.761	40.932
Consumo de Dolomita	129	198	365	487	490	730	528	860	1.242	1.251	821	655	655
Produção de Ferroligas	11	130	286	220	197	301	632	1.049	1.298	1.165	1.137	1.044	972
Produção de Magnésio	-	-	-	-	168	293	299	468	95	92	92	92	92
Consumo de Dolomita	-	-	-	-	29	52	53	62	95	92	92	92	92
Uso de SF6	-	-	-	-	139	241	246	406	-	-	-	-	-
Produção de Outros Não-Ferrosos	188	236	789	891	547	1.289	1.142	1.239	3.760	5.392	5.320	5.271	5.615
Produtos Minerais	5.391	8.942	14.774	12.361	14.998	15.942	21.386	19.086	27.747	29.922	31.751	32.330	32.687
Consumo de Barrilha	47	87	157	120	182	247	243	196	396	375	441	430	430
Produção de Cal	1.460	1.655	2.935	3.356	3.687	4.103	5.007	5.504	5.949	6.335	6.401	6.482	6.482
Cal Calcítica	1.053	1.194	2.116	2.420	2.659	2.989	3.948	4.346	4.801	5.220	5.299	5.367	5.367
Cal Dolomítica	158	179	318	363	399	432	411	450	446	433	428	433	433
Cal Magnesiana	249	282	501	572	629	682	648	709	702	682	674	683	683
Produção de Cimento	3.853	7.163	11.637	8.831	11.062	11.528	16.047	13.273	21.288	23.080	24.778	25.286	25.643
Produção de Vidro	31	37	45	54	67	64	89	113	114	132	132	132	132
Consumo de Calcário	25	31	37	44	55	53	74	93	93	108	108	108	108
Consumo de Dolomita	6	7	8	10	12	11	16	20	20	23	23	23	23
Uso de SF6 em Equipamentos Elétricos	-	-	-	-	100	98	120	143	177	186	192	199	205
Uso Não-Energético de Combustíveis e Uso de Solventes	-	-	-	454	428	414	505	515	663	744	679	769	665
Total Geral	13.796	21.918	38.731	46.109	51.497	65.204	76.412	84.170	94.630	100.643	100.834	99.306	101.149

Tabela 8: Emissões nacionais por tipo de gás (t)

BR	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
CO ₂	11.318.844	17.457.953	32.088.713	39.717.672	42.911.659	53.781.437	65.169.223	68.533.190	79.784.157	87.055.689	86.427.704	84.195.392	85.374.163
CH ₄	9.806	23.578	30.769	43.336	49.126	43.878	46.906	59.270	49.203	49.646	48.195	45.733	43.610
N ₂ O	6.839	11.734	17.070	13.229	11.851	18.589	21.165	27.522	2.227	2.285	2.220	2.111	2.083
СО	232.225	504.083	670.885	938.861	1.044.575	970.415	970.662	1.221.459	984.456	1.024.859	987.852	919.985	880.679
COVNM	1.530.723	2.334.757	3.385.100	1.832.764	1.949.938	1.921.668	2.617.431	2.548.799	4.547.255	4.795.869	4.647.020	4.974.433	113.214.359
NO_x	13.659	23.857	39.308	57.504	60.552	73.481	86.798	102.827	98.127	106.839	103.396	99.639	100.419
HFC-125	-	-	-	-	-	-	7	121	501	468	515	561	607
HFC-134a	-	-	-	-	1	291	1.709	2.789	7.034	6.258	6.671	7.083	7.496
HFC-143a	-	-	-	-	-	-	8	104	467	433	476	520	563
HFC-152a	-	-	-	-	-	-	0	54	-	-	-	-	-
HFC-23	-	-	-	-	120	153	-	-	-	-	-	-	-
HFC-32	-	-	-	-	-	-	-	-	106	114	128	143	158
C_2F_6	1	3	6	15	27	26	12	10	6	5	5	5	3
CF ₄	21	46	99	191	306	306	147	131	77	67	70	62	44
SF ₆	-	-	-	-	10	14	15	23	7	8	8	8	9

Tabela 9: Emissões nacionais de CO₂e (GWP) por tipo de gás (ktCO₂e)

BR	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
CO ₂	11.319	17.458	32.089	39.718	42.912	53.781	65.169	68.533	79.784	87.056	86.428	84.195	85.374
CH ₄	206	495	646	910	1.032	921	985	1.245	1.033	1.043	1.012	960	916
N_2O	2.120	3.638	5.292	4.101	3.674	5.763	6.561	8.532	690	708	688	654	646
HFC-125	-	-	-	-	-	-	20	338	1.403	1.312	1.441	1.571	1.701
HFC-134a	-	-	-	-	1	378	2.222	3.625	9.145	8.136	8.672	9.208	9.745
HFC-143a	-	-	-	-	-	-	29	394	1.775	1.644	1.810	1.975	2.141
HFC-152a	-	-	-	-	-	-	0	8	-	-	-	-	-
HFC-23	-	-	-	-	1.407	1.791	-	-	-	-	-	-	-
HFC-32	-	-	-	-	-	-	-	-	69	74	83	93	103
C ₂ F ₆	13	28	60	137	244	242	108	93	54	48	50	45	32
CF ₄	139	300	644	1.243	1.988	1.989	953	853	499	437	457	405	288
SF ₆	-	-	-	-	239	339	366	550	177	186	192	199	205
Total Geral	13.796	21.918	38.731	46.109	51.497	65.204	76.412	84.170	94.630	100.643	100.834	99.306	101.149

Tabela 10: Emissões nacionais de CO₂e (GWP) alocadas por UF (ktCO₂e)

BR	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Emissões Alocadas	2.335	11.481	31.300	38.570	42.500	51.565	56.014	56.902	63.730	67.081	67.008	65.048	65.749
AL	-	-	135	107	146	110	197	162	243	254	253	295	299
AM	-	-	-	-	166	130	251	232	261	293	283	278	282
BA	-	214	551	674	622	701	628	512	570	506	531	596	603
CE	-	36	152	211	258	281	591	535	671	715	769	636	645
DF	-	152	265	294	364	341	764	861	1.138	1.275	1.398	1.484	1.505
ES	-	156	284	5.169	4.491	5.413	5.853	5.560	10.091	8.788	7.800	7.644	7.870
GO	-	205	357	317	399	363	287	293	477	501	576	599	608
MA	-	45	86	486	1.068	1.239	962	905	890	910	1.013	884	590
MG	149	2.648	9.249	9.828	11.674	14.781	17.045	18.763	21.433	21.047	20.981	19.843	20.136
MS	-	-	160	142	131	203	319	242	359	424	404	555	563
MT	-	145	-	-	-	182	230	236	320	350	371	342	347
PA	-	91	135	177	880	1.238	1.044	1.200	1.320	1.351	1.361	1.397	1.386
PB	-	162	195	136	474	369	660	597	779	729	887	864	877
PE	-	288	444	353	174	184	201	190	305	389	453	432	438
PI	-	-	-	-	-	-	-	153	226	219	236	233	236
PR	-	406	816	905	1.191	1.379	1.778	1.760	2.282	2.338	2.250	2.455	2.486
RJ	11	922	5.374	8.028	7.881	8.885	8.505	7.822	10.357	14.911	14.526	13.574	13.949
RN	-	72	108	102	58	68	143	135	167	237	466	556	564
RO	-	-	-	-	-	-	-	-	207	251	257	199	202
RS	-	251	318	390	577	617	746	558	775	793	812	812	824
SC	-	105	151	117	227	219	141	77	164	356	713	642	651
SE	-	65	70	178	202	178	766	774	1.098	1.153	1.115	1.198	1.215
SP	2.175	5.519	12.449	10.957	11.518	14.685	14.904	15.335	9.428	9.104	9.351	9.345	9.286
TO	-	-	-	-	-	-	-	-	169	188	203	184	186
Emissões Não Alocadas	11.461	10.438	7.430	7.539	8.997	13.639	20.398	26.408	30.900	33.563	33.826	34.258	35.400
Total Geral	13.796	21.918	38.731	46.109	51.497	65.204	76.412	83.310	94.630	100.643	100.834	99.306	101.149

Tabela 11: Emissões nacionais de CO₂e (GWP) por atividade em 2014 alocadas por UF (ktCO₂e)

BR	Emissões Não Alocada		AL	AM	AP	ВА	CE	DF	ES	GO	MA	MG	MS	MT	PA	РВ	PE	PI	PR	RJ	RN	RO	RR	RS	SC	SE	SP	TO
Emissões de HFCs	13.689		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indústria Química	1.415	; -	-	-	-	46	-	-	-	-	-	519	-	-	-	-	-	-	243	563	-	-	-	-	-	7	722	-
Produção de Ácido Adípico	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40	-
Produção de Ácido Fosfórico	90) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Ácido Nítrico	-	-	-	-	-	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	214	-
Produção de Acrilonitrila	-	-	-	-	-	22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Amônia	-	-	-	-	-	11	-	-	-	-	-	519	-	-	-	-	-	-	243	563	-	-	-	-	-	7	463	-
Produção de Caprolactama	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Carbureto de Cálcio	42	! -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Cloreto de Vinila	206	. -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Coque de Petróleo Calcinado	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-
Produção de Eteno	236	i -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Metanol	36	i -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Negro-de-fumo	648	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Óxido de Eteno	157	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produtos Minerais	8.403	-	299	282	-	557	645	1.505	974	608	301	5.327	563	347	624	877	438	236	2.243	1.190	564	202	-	813	651	1.209	3.642	186
Consumo de Barrilha	430) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Cal	6.482	! -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cal Calcítica	5.367	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cal Dolomítica	433	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cal Magnesiana	683	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Cimento	1.359) -	299	282	-	557	645	1.505	974	608	301	5.327	563	347	624	877	438	236	2.243	1.190	564	202	-	813	651	1.209	3.642	186
Produção de Vidro	132	! -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Consumo de Calcário	108	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Consumo de Dolomita	23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Metais	11.023		-	-	-	-	-	-	6.896	-	289	14.291	-	-	762	-	-	-	-	12.197	-	-	-	11	-	-	4.922	-
Produção de Alumínio	-	-	-	-	-	-	-	-	-	-	289	86	-	-	762	-	-	-	-	-	-	-	-	-	-	-	769	-
Tecnologia Prebaked Anode	-	-	-	-	-	-	-	-	-	-	289	-	-	-	762	-	-	-	-	-	-	-	-	-	-	-	-	-
Tecnologia Soderberg	-	-	-	-	-	-	-	-	-	-	-	86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	769	-
Produção de Ferro Gusa e Aço	4.492	! -	-	-	-	-	-	-	6.896	-	-	14.058	-	-	-	-	-	-	-	12.197	-	-	-	11	-	-	4.152	-
Consumo de Calcário	218	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Consumo de Combustíveis Redutores	3.619	- (-	-	-	-	-	-	6.896	-	-	14.058	-	-	-	-	-	-	-	12.197	-	-	-	11	-	-	4.152	-
Consumo de Dolomita	655		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Ferroligas	916	i -	-	-	-	-	-	-	-	-	-	55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
Produção de Magnésio	-	-	-	-	-	-	-	-	-	-	-	92	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Consumo de Dolomita	-	-	-	-	-	-	-	-	-	-	-	92	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uso de SF6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Produção de Outros Não-Ferrosos	5.615	; -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uso de SF6 em Equipamentos Elétricos	205	i -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uso Não-Energético de Combustíveis e Uso de Solven	ntes 665		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Total Geral	35.400) -	299	282	-	603	645	1.505	7.870	608	590	20.136	563	347	1.386	877	438	236	2.486	13.949	564	202	-	824	651	1.215	9.286	186

Tabela 12: Emissões de CO₂e (GWP) na Produção de Cimento alocadas por UF (ktCO₂e)

Produção de Cimento	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Emissões Alocadas	-	7.163	11.637	8.831	11.062	11.528	15.909	14.262	21.202	22.993	24.680	23.946	24.284
AL	-	-	135	107	146	110	197	162	243	254	253	295	299
AM	-	-	-	-	166	130	251	232	261	293	283	278	282
BA	-	214	348	237	217	372	278	206	425	457	485	549	557
CE	-	36	152	211	258	281	591	535	671	715	769	636	645
DF	-	152	265	294	364	341	764	861	1.138	1.275	1.398	1.484	1.505
ES	-	156	284	297	426	353	573	617	853	917	942	960	974
GO	-	205	357	317	399	363	287	293	477	501	576	599	608
MA	-	45	86	89	56	54	134	114	138	153	318	297	301
MG	-	2.261	3.435	2.491	2.833	2.886	3.620	3.505	5.100	5.488	5.929	5.253	5.327
MS	-	-	160	142	131	203	319	242	359	424	404	555	563
MT	-	145	-	-	-	182	230	236	320	350	371	342	347
PA	-	91	135	144	138	127	220	267	541	559	589	615	624
PB	-	162	195	136	474	369	660	597	779	729	887	864	877
PE	-	288	444	353	174	184	201	190	305	389	453	432	438
PI	-	-	-	-	-	-	-	153	226	219	236	233	236
PR	-	406	816	672	957	1.113	1.534	1.490	2.047	2.069	2.013	2.212	2.243
RJ	-	845	1.243	799	1.029	1.014	1.173	874	1.503	1.791	1.832	1.173	1.190
RN	-	72	108	102	58	68	143	135	167	237	466	556	564
RO	-	-	-	-	-	-	-	-	207	251	257	199	202
RS	-	251	318	390	577	593	716	546	764	789	801	802	813
SC	-	105	151	117	227	219	141	77	164	356	713	642	651
SE	-	65	67	170	196	163	761	767	1.091	1.145	1.109	1.192	1.209
SP	-	1.665	2.937	1.763	2.236	2.403	3.118	2.164	3.253	3.444	3.395	3.592	3.642
то	-	-	-	-	-	-	-	-	169	188	203	184	186
Emissões Não Alocadas	3.853	-	-	-	-	-	138	87	86	86	98	1.340	1.359
Total Geral	3.853	7.163	11.637	8.831	11.062	11.528	16.047	14.349	21.288	23.080	24.778	25.286	25.643

Tabela 13: Emissões de CO₂e (GWP) na Produção de Alumínio alocadas por UF (ktCO₂e)

Produção de Alumínio	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Tecnologia Soderberg	254	548	1.178	1.565	1.712	1.597	1.321	1.454	1.570	1.314	1.419	1.238	855
BA	-	-	126	264	257	157	170	145	99	-	-	-	-
MG	149	386	675	687	667	538	428	370	331	326	320	238	86
SP	104	162	377	613	789	902	723	939	1.140	988	1.099	999	769
Tecnologia Prebaked Anode	-	-	-	778	2.111	2.598	1.859	1.919	1.531	1.549	1.467	1.368	1.051
MA	-	-	-	397	1.012	1.185	828	790	752	757	695	587	289
PA	-	-	-	33	742	1.111	824	933	779	792	772	782	762
RJ	-	-	-	348	357	303	207	195	-	-	-	-	-
Total Geral	254	548	1.178	2.342	3.824	4.195	3.180	3.373	3.101	2.863	2.886	2.606	1.906

Tabela 14: Emissões de CO₂e (GWP) na Indústria Química alocadas por UF (ktCO₂e)

Indústria Química	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produção de Ácido Adípico	1.925	2.999	4.456	3.178	2.675	4.675	5.428	6.290	40	40	40	40	40
SP	1.925	2.999	4.456	3.178	2.675	4.675	5.428	6.290	40	40	40	40	40
Produção de Ácido Nítrico	115	471	541	519	561	636	648	694	248	243	237	227	227
BA	-	-	-	66	38	42	44	40	14	13	13	13	13
RJ	0	1	-	-	-	-	-	-	-	-	-	-	-
SP	114	470	541	453	523	593	604	655	234	229	224	214	214
Produção de Amônia	42	299	648	1.691	1.683	1.785	1.663	1.922	1.739	1.995	1.758	1.805	1.805
BA	-	-	-	12	12	13	11	12	11	13	11	11	11
MG	-	-	-	254	301	332	376	504	500	573	505	519	519
PR	-	-	-	233	234	266	244	270	234	269	237	243	243
RJ	11	76	422	684	640	619	552	620	542	622	548	563	563
SE	-	-	3	8	6	14	5	7	6	7	6	7	7
SP	31	223	223	500	490	540	475	509	446	511	451	463	463
Produção de Acrilonitrila	-	-	12	17	18	19	21	18	22	22	22	22	22
BA	-	-	12	17	18	19	21	18	22	22	22	22	22
Produção de Caprolactama	-	-	65	79	78	98	104	92	-	-	-	-	-
BA	-	-	65	79	78	98	104	92	-	-	-	-	-
Produção de Coque de Petro	-	-	-	2	2	3	3	3	5	5	5	5	5
SP	-	-	-	2	2	3	3	3	5	5	5	5	5

Tabela 15: Emissões de CO₂e (GWP) na Produção de Magnésio alocadas por UF (ktCO₂e)

Produção de Magnésio	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Consumo de Dolomita	-	-	-	-	29.400	51.521	52.613	73.549	95.136	91.560	91.560	91.560	91.560
MG	-	-	-	-	29.400	51.521	52.613	73.549	95.136	91.560	91.560	91.560	91.560
Uso de SF ₆	-	-	-	-	138.620	241.390	246.170	455.295	-	-	-	-	-
MG	-	-	-	-	138.620	241.390	246.170	455.295	-	-	-	-	-
Total Geral	-	-	-	-	168.020	292.911	298.783	528.844	95.136	91.560	91.560	91.560	91.560

Tabela 16: Emissões de CO₂e (GWP) na Produção de Ferro-gusa e Aço alocadas por UF (ktCO₂e)

Produção de Ferro-gusa e Aço	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Consumo de Calcário	274	422	778	1.038	1.044	882	1.086	997	1.609	1.835	1.625	218	218
Emissões Não Alocadas	274	422	778	1.038	1.044	882	1.086	997	1.609	1.835	1.625	218	218
Consumo de Dolomita	129	198	365	487	490	730	528	629	1.242	1.251	821	655	655
Emissões Não Alocadas	129	198	365	487	490	730	528	629	1.242	1.251	821	655	655
Consumo de Combustíveis Redutores	5.325	7.374	14.277	22.215	22.494	30.796	36.282	38.492	39.025	42.279	40.843	39.761	40.932
Emissões Alocadas	-	-	12.657	21.778	22.359	28.200	28.660	29.610	37.164	38.725	37.222	36.245	37.313
ES	-	-	-	4.872	4.064	5.060	5.280	4.943	9.237	7.871	6.858	6.684	6.896
MG	-	-	5.035	6.269	7.637	10.598	12.225	13.748	15.296	14.467	14.072	13.682	14.058
RJ	-	-	3.710	6.198	5.855	6.950	6.573	6.134	8.312	12.498	12.146	11.838	12.197
RS	-	-	-	-	-	24	30	12	11	5	11	10	11
SP	-	-	3.912	4.440	4.802	5.569	4.552	4.774	4.308	3.885	4.136	4.031	4.152
Emissões Não Alocadas	5.325	7.374	1.620	437	135	2.595	7.623	8.882	1.861	3.553	3.620	3.515	3.619
Total Geral	5.728	7.993	15.421	23.741	24.028	32.408	37.896	40.118	41.876	45.364	43.289	40.634	41.804

Tabela 17: Emissões de CO₂e (GWP) na Produção de Ferroligas alocadas por UF (ktCO₂e)

Produção de Ferroligas	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Emissões Alocadas	-	-	108	134	69	134	100	108	113	102	64	60	56
MG	-	-	104	127	69	133	98	107	112	101	64	60	55
SP	-	-	3	7	0	0	1	1	1	1	1	1	1
Emissões Não Alocadas	11	130	179	86	128	168	532	936	1.185	1.063	1.073	984	916
Total Geral	11	130	286	220	197	301	632	1.044	1.298	1.165	1.137	1.044	972

Tabela 18: Emissões de CO₂e (GWP) alocadas nas UFs - Alagoas (ktCO₂e)

AL	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	-	135	107	146	110	197	162	243	254	253	295	299
Produção de Cimento	-	-	135	107	146	110	197	162	243	254	253	295	299
Total Geral			135	107	146	110	197	162	243	254	253	295	299

Tabela 19: Emissões de CO₂e (GWP) alocadas nas UFs - Amazonas (ktCO₂e)

AM	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	-	-	-	166	130	251	232	261	293	283	278	282
Produção de Cimento	-	-	-	-	166	130	251	232	261	293	283	278	282
Total Geral	-	-	-	-	166	130	251	232	261	293	283	278	282

Tabela 20: Emissões de CO₂e (GWP) alocadas nas UFs - Bahia (ktCO₂e)

BA	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Indústria Química	-	-	77	173	147	172	180	162	47	48	47	46	46
Produção de Ácido Nítrico	-	-	-	66	38	42	44	40	14	13	13	13	13
Produção de Acrilonitrila	-	-	12	17	18	19	21	18	22	22	22	22	22
Produção de Amônia	-	-	-	12	12	13	11	12	11	13	11	11	11
Produção de Caprolactama	-	-	65	79	78	98	104	92	-	-	-	-	-
Produtos Minerais	-	214	348	237	217	372	278	206	425	457	485	549	557
Produção de Cimento	-	214	348	237	217	372	278	206	425	457	485	549	557
Produção de Metais	-	-	126	264	257	157	170	145	99	-	-	-	-
Produção de Alumínio	-	-	126	264	257	157	170	145	99	-	-	-	-
Tecnologia Soderberg	-	-	126	264	257	157	170	145	99	-	-	-	-
Total Geral	-	214	551	674	622	701	628	512	570	506	531	596	603

Tabela 21: Emissões de CO₂e (GWP) alocadas nas UFs - Ceará (ktCO₂e)

CE	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	36	152	211	258	281	591	535	671	715	769	636	645
Produção de Cimento	-	36	152	211	258	281	591	535	671	715	769	636	645
Total Geral	-	36	152	211	258	281	591	535	671	715	769	636	645

Tabela 22: Emissões de CO₂e (GWP) alocadas nas UFs – Distrito Federal (ktCO₂e)

DF	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	152	265	294	364	341	764	861	1.138	1.275	1.398	1.484	1.505
Produção de Cimento	-	152	265	294	364	341	764	861	1.138	1.275	1.398	1.484	1.505
Total Geral	-	152	265	294	364	341	764	861	1.138	1.275	1.398	1.484	1.505

Tabela 23: Emissões de CO₂e (GWP) alocadas nas UFs – Espírito Santo (ktCO₂e)

ES	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	156	284	297	426	353	573	617	853	917	942	960	974
Produção de Cimento	-	156	284	297	426	353	573	617	853	917	942	960	974
Produção de Metais	-	-	-	4.872	4.064	5.060	5.280	4.943	9.237	7.871	6.858	6.684	6.896
Produção de Ferro Gusa e Aço	-	-	-	4.872	4.064	5.060	5.280	4.943	9.237	7.871	6.858	6.684	6.896
Consumo de Combustíveis Redutores	-	-	-	4.872	4.064	5.060	5.280	4.943	9.237	7.871	6.858	6.684	6.896
Total Geral	-	156	284	5.169	4.491	5.413	5.853	5.560	10.091	8.788	7.800	7.644	7.870

Tabela 24: Emissões de CO₂e (GWP) alocadas nas UFs – Goiás (ktCO₂e)

GO	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	205	357	317	399	363	287	293	477	501	576	599	608
Produção de Cimento	-	205	357	317	399	363	287	293	477	501	576	599	608
Total Geral	-	205	357	317	399	363	287	293	477	501	576	599	608

Tabela 25: Emissões de CO₂e (GWP) alocadas nas UFs – Maranhão (ktCO₂e)

MA	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	45	86	89	56	54	134	114	138	153	318	297	301
Produção de Cimento	-	45	86	89	56	54	134	114	138	153	318	297	301
Produção de Metais	-	-	-	397	1.012	1.185	828	790	752	757	695	587	289
Produção de Alumínio	-	-	-	397	1.012	1.185	828	790	752	757	695	587	289
Tecnologia Prebaked Anode	=	-	-	397	1.012	1.185	828	790	752	757	695	587	289
Total Geral		45	86	486	1.068	1.239	962	905	890	910	1.013	884	590

Tabela 26: Emissões de CO₂e (GWP) alocadas nas UFs – Minas Gerais (ktCO₂e)

MG	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Indústria Química	-	-	-	254	301	332	376	504	500	573	505	519	519
Produção de Amônia	-	-	-	254	301	332	376	504	500	573	505	519	519
Produtos Minerais	-	2.261	3.435	2.491	2.833	2.886	3.620	3.505	5.100	5.488	5.929	5.253	5.327
Produção de Cimento	-	2.261	3.435	2.491	2.833	2.886	3.620	3.505	5.100	5.488	5.929	5.253	5.327
Produção de Metais	149	386	5.815	7.083	8.541	11.562	13.049	14.754	15.833	14.985	14.547	14.071	14.291
Produção de Alumínio	149	386	675	687	667	538	428	370	331	326	320	238	86
Tecnologia Soderberg	149	386	675	687	667	538	428	370	331	326	320	238	86
Produção de Ferro Gusa e Aço	-	-	5.035	6.269	7.637	10.598	12.225	13.748	15.296	14.467	14.072	13.682	14.058
Consumo de Combustíveis Redutores	-	-	5.035	6.269	7.637	10.598	12.225	13.748	15.296	14.467	14.072	13.682	14.058
Produção de Ferroligas	-	-	104	127	69	133	98	107	112	101	64	60	55
Consumo de Combustíveis Redutores	-	-	104	127	69	133	98	107	112	101	64	60	55
Produção de Magnésio	-	-	-	-	168	293	299	529	95	92	92	92	92
Consumo de Dolomita	-	-	-	-	29	52	53	74	95	92	92	92	92
Uso de SF6	-	-	-	-	139	241	246	455	-	-	-	-	-
Total Geral	149	2.648	9.249	9.828	11.674	14.781	17.045	18.763	21.433	21.047	20.981	19.843	20.136

Tabela 27: Emissões de CO₂e (GWP) alocadas nas UFs – Mato Grosso do Sul (ktCO₂e)

MS	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	-	160	142	131	203	319	242	359	424	404	555	563
Produção de Cimento	-	-	160	142	131	203	319	242	359	424	404	555	563
Total Geral	-	-	160	142	131	203	319	242	359	424	404	555	563

Tabela 28: Emissões de CO₂e (GWP) alocadas nas UFs – Mato Grosso (ktCO₂e)

MT	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	145	-	-	-	182	230	236	320	350	371	342	347
Produção de Cimento	-	145	-	-	-	182	230	236	320	350	371	342	347
Total Geral		145	-	-	-	182	230	236	320	350	371	342	347

Tabela 29: Emissões de CO₂e (GWP) alocadas nas UFs – Pará (ktCO₂e)

PA	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	91	135	144	138	127	220	267	541	559	589	615	624
Produção de Cimento	-	91	135	144	138	127	220	267	541	559	589	615	624
Produção de Metais	-	-	-	33	742	1.111	824	933	779	792	772	782	762
Produção de Alumínio	-	-	-	33	742	1.111	824	933	779	792	772	782	762
Tecnologia Prebaked Anode	-	-	-	33	742	1.111	824	933	779	792	772	782	762
Total Geral	-	91	135	177	880	1.238	1.044	1.200	1.320	1.351	1.361	1.397	1.386

Tabela 30: Emissões de CO₂e (GWP) alocadas nas UFs – Paraíba (ktCO₂e)

PB	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	162	195	136	474	369	660	597	779	729	887	864	877
Produção de Cimento	-	162	195	136	474	369	660	597	779	729	887	864	877
Total Geral		162	195	136	474	369	660	597	779	729	887	864	877

Tabela 31: Emissões de CO₂e (GWP) alocadas nas UFs – Pernambuco (ktCO₂e)

PE	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	288	444	353	174	184	201	190	305	389	453	432	438
Produção de Cimento	-	288	444	353	174	184	201	190	305	389	453	432	438
Total Geral	-	288	444	353	174	184	201	190	305	389	453	432	438

Tabela 32: Emissões de CO₂e (GWP) alocadas nas UFs – Piauí (ktCO₂e)

PI	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	-	-	-	-	-	-	153	226	219	236	233	236
Produção de Cimento	-	-	-	-	-	-	-	153	226	219	236	233	236
Total Geral	-	-	-	-	-	-	-	153	226	219	236	233	236

Tabela 33: Emissões de CO₂e (GWP) alocadas nas UFs – Paraná (ktCO₂e)

PR	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Indústria Química	-	-	-	233	234	266	244	270	234	269	237	243	243
Produção de Amônia	-	-	-	233	234	266	244	270	234	269	237	243	243
Produtos Minerais	-	406	816	672	957	1.113	1.534	1.490	2.047	2.069	2.013	2.212	2.243
Produção de Cimento	-	406	816	672	957	1.113	1.534	1.490	2.047	2.069	2.013	2.212	2.243
Total Geral	-	406	816	905	1.191	1.379	1.778	1.760	2.282	2.338	2.250	2.455	2.486

Tabela 34: Emissões de CO₂e (GWP) alocadas nas UFs – Rio de Janeiro (ktCO₂e)

RJ	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Indústria Química	11	77	422	684	640	619	552	620	542	622	548	563	563
Produção de Ácido Nítrico	0	1	-	-	-	-	-	-	-	-	-	-	-
Produção de Amônia	11	76	422	684	640	619	552	620	542	622	548	563	563
Produtos Minerais	-	845	1.243	799	1.029	1.014	1.173	874	1.503	1.791	1.832	1.173	1.190
Produção de Cimento	-	845	1.243	799	1.029	1.014	1.173	874	1.503	1.791	1.832	1.173	1.190
Produção de Metais	-	-	3.710	6.545	6.212	7.252	6.780	6.329	8.312	12.498	12.146	11.838	12.197
Produção de Alumínio	-	-	-	348	357	303	207	195	-	-	-	-	-
Tecnologia Prebaked Anode	-	-	-	348	357	303	207	195	-	-	-	-	-
Produção de Ferro Gusa e Aço	-	-	3.710	6.198	5.855	6.950	6.573	6.134	8.312	12.498	12.146	11.838	12.197
Consumo de Combustíveis Redutores	-	-	3.710	6.198	5.855	6.950	6.573	6.134	8.312	12.498	12.146	11.838	12.197
Total Geral	11	922	5.374	8.028	7.881	8.885	8.505	7.822	10.357	14.911	14.526	13.574	13.949

Tabela 35: Emissões de CO₂e (GWP) alocadas nas UFs – Rio Grande do Norte (ktCO₂e)

RN	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	72	108	102	58	68	143	135	167	237	466	556	564
Produção de Cimento	-	72	108	102	58	68	143	135	167	237	466	556	564
Total Geral	-	72	108	102	58	68	143	135	167	237	466	556	564

Tabela 36: Emissões de CO₂e (GWP) alocadas nas UFs – Rondônia (ktCO₂e)

RO	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	-	-	-	-	-	-	-	207	251	257	199	202
Produção de Cimento	-	-	-	-	-	-	-	-	207	251	257	199	202
Total Geral	-						-		207	251	257	199	202

Tabela 37: Emissões de CO₂e (GWP) alocadas nas UFs – Rio Grande do Sul (ktCO₂e)

RS	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	251	318	390	577	593	716	546	764	789	801	802	813
Produção de Cimento	-	251	318	390	577	593	716	546	764	789	801	802	813
Produção de Metais	-	-	-	-	-	24	30	12	11	5	11	10	11
Produção de Ferro Gusa e Aço	-	-	-	-	-	24	30	12	11	5	11	10	11
Consumo de Combustíveis Redutores	-	-	-	-	-	24	30	12	11	5	11	10	11
Total Geral	-	251	318	390	577	617	746	558	775	793	812	812	824

Tabela 38: Emissões de CO₂e (GWP) alocadas nas UFs – Santa Catarina (ktCO₂e)

SC	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	105	151	117	227	219	141	77	164	356	713	642	651
Produção de Cimento	-	105	151	117	227	219	141	77	164	356	713	642	651
Total Geral	-	105	151	117	227	219	141	77	164	356	713	642	651

Tabela 39: Emissões de CO₂e (GWP) alocadas nas UFs – Sergipe (ktCO₂e)

SE	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Indústria Química	-	-	3	8	6	14	5	7	6	7	6	7	7
Produção de Amônia	-	-	3	8	6	14	5	7	6	7	6	7	7
Produtos Minerais	-	65	67	170	196	163	761	767	1.091	1.145	1.109	1.192	1.209
Produção de Cimento	-	65	67	170	196	163	761	767	1.091	1.145	1.109	1.192	1.209
Total Geral	-	65	70	178	202	178	766	774	1.098	1.153	1.115	1.198	1.215

Tabela 40: Emissões de CO₂e (GWP) alocadas nas UFs – São Paulo (ktCO₂e)

SP	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Indústria Química	2.071	3.692	5.220	4.133	3.691	5.811	6.510	7.457	725	786	720	722	722
Produção de Ácido Adípico	1.925	2.999	4.456	3.178	2.675	4.675	5.428	6.290	40	40	40	40	40
Produção de Ácido Nítrico	114	470	541	453	523	593	604	655	234	229	224	214	214
Produção de Amônia	31	223	223	500	490	540	475	509	446	511	451	463	463
Produção de Coque de Petróleo Calcinado	-	-	-	2	2	3	3	3	5	5	5	5	5
Produtos Minerais	-	1.665	2.937	1.763	2.236	2.403	3.118	2.164	3.253	3.444	3.395	3.592	3.642
Produção de Cimento	-	1.665	2.937	1.763	2.236	2.403	3.118	2.164	3.253	3.444	3.395	3.592	3.642
Produção de Metais	104	162	4.292	5.060	5.591	6.471	5.276	5.715	5.449	4.874	5.236	5.031	4.922
Produção de Alumínio	104	162	377	613	789	902	723	939	1.140	988	1.099	999	769
Tecnologia Soderberg	104	162	377	613	789	902	723	939	1.140	988	1.099	999	769
Produção de Ferro Gusa e Aço	-	-	3.912	4.440	4.802	5.569	4.552	4.774	4.308	3.885	4.136	4.031	4.152
Consumo de Combustíveis Redutores	-	-	3.912	4.440	4.802	5.569	4.552	4.774	4.308	3.885	4.136	4.031	4.152
Produção de Ferroligas	-	-	3	7	0	0	1	1	1	1	1	1	1
Consumo de Combustíveis Redutores	-	-	3	7	0	0	1	1	1	1	1	1	1
Total Geral	2.175	5.519	12.449	10.957	11.518	14.685	14.904	15.335	9.428	9.104	9.351	9.345	9.286

Tabela 41: Emissões de CO₂e (GWP) alocadas nas UFs – Tocantins (ktCO₂e)

TO	1970	1975	1980	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Produtos Minerais	-	-	-	-	-	-	-	-	169	188	203	184	186
Produção de Cimento	-	-	-	-	-	-	-	-	169	188	203	184	186
Total Geral	-	-	-	-	-	-	-	-	169	188	203	184	186

Referências bibliográficas

Abiquim – Associação Brasileira da Indústria Química (1973). Anuário da Indústria Química Brasileira 1973. São Paulo, 1973.

Abiquim – Associação Brasileira da Indústria Química (1974). Anuário da Indústria Química Brasileira 1974. São Paulo, 1974.

Abiquim – Associação Brasileira da Indústria Química (1985). Anuário da Indústria Química Brasileira 1985. São Paulo, 1985.

Abiquim— Associação Brasileira da Indústria Química (1990). Anuário da Indústria Química Brasileira 1990. São Paulo, 1990.

Abiquim – Associação Brasileira da Indústria Química (2013). Anuário da Indústria Química Brasileira 2013. São Paulo, 2013.

Abiquim – Associação Brasileira da Indústria Química (2014). Anuário da Indústria Química Brasileira 2014. São Paulo, 2014.

Abiquim – Associação Brasileira da Indústria Química (2013). Guia da Indústria Química Brasileira 2013. São Paulo, 2014.

ASPE – Agência de Serviços Públicos de Energia do Estado do Espírito Santo (2013). Balanço Energético do Estado do Espírito Santo 2013, Ano-base 2012. Vitória, 2013.

CEEE – Companhia Estadual de Energia Elétrica (2014). Balanço Energético do Rio Grande do Sul 2014: ano base 2013. Porto Alegre, 2014.

CEMIG – Companhia Energética de Minas Gerais (2013). 28º Balanço Energético do Estado de Minas Gerais – BEEMG 2013: ano base 2012. Belo Horizonte, 2014.

GERJ – Governo do Estado do Rio de Janeiro (2014). Balanço Energético do Estado do Rio de Janeiro 2014 – Ano Base 2013. Rio de Janeiro, 2014.

MCTI – MINISTÉRIO DA CIÊNCIA E TECNOLOGIA E INOVAÇÃO (2010). Emissões de Dióxido de Carbono por Queima de Combustíveis: Abordagem Bottom-Up - Relatório de Referência. Brasília, 2010.

MCTI – MINISTÉRIO DA CIÊNCIA E TECNOLOGIA E INOVAÇÃO (2010). Inventário Brasileiro de Emissões Antrópicas por Fontes e Remoções por Sumidouros de Gases de Efeito Estufa não Controlados pelo Protocolo de Montreal – Parte 2. Brasília, 2010.

MCTI – MINISTÉRIO DA CIÊNCIA E TECNOLOGIA E INOVAÇÃO (2013). Estimativas anuais de emissões de gases de efeito estufa no Brasil. Brasília, 2013.

MCTI – MINISTÉRIO DA CIÊNCIA E TECNOLOGIA E INOVAÇÃO (2014). Emissões de Gases de Efeito Estufa por Queima de Combustíveis: Abordagem Bottom-Up (Anexo Metodológico) - Relatório de Referência. Brasília, 2014 (Documento para Consulta Pública).

MCTI – MINISTÉRIO DA CIÊNCIA E TECNOLOGIA E INOVAÇÃO (2014). Emissões de Gases de Efeito Estufa nos Processos Industriais: Indústria Química – Relatório de Referência. Brasília, 2014 (Documento para Consulta Pública).

MCTI – MINISTÉRIO DA CIÊNCIA E TECNOLOGIA E INOVAÇÃO (2014). Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção de Metais – Relatório de Referência. Brasília, 2014 (Documento para Consulta Pública).

MCTI – MINISTÉRIO DA CIÊNCIA E TECNOLOGIA E INOVAÇÃO (2014). Emissões de Gases de Efeito Estufa nos Processos Industriais: Produção e Consumo de HFCs e SF6 – Relatório de Referência. Brasília, 2014 (Documento para Consulta Pública).

MCTI – MINISTÉRIO DA CIÊNCIA E TECNOLOGIA E INOVAÇÃO (2014). Emissões de Gases de Efeito Estufa nos Processos Industriais: Produtos Minerais – Relatório de Referência. Brasília, 2014 (Documento para Consulta Pública).

MME – MINISTÉRIO DE MINAS E ENERGIA (2014). Anuário Estatístico do Setor Metalúrgico. Brasília, 2014.

MME – MINISTÉRIO DE MINAS E ENERGIA (2014). Anuário Estatístico do Setor de Transformação de Não Metálicos 2014. Brasília, 2014.

MME – MINISTÉRIO DE MINAS E ENERGIA (2015). Balanço Energético Nacional 2015, Ano-base 2014. Brasília, 2015.

MME – MINISTÉRIO DE MINAS E ENERGIA (2009). Estudos de Referência do Plano Duodecenal de Geologia, Mineração e Transformação Mineral 2030 – Perfil da Cal. Brasília, 2009.

SEESP – Secretaria de Energia do Estado de São Paulo (2015). Balanço Energético do Estado de São Paulo 2015 – Ano-base 2014. São Paulo, 2015.

SNIC – Sindicato Nacional da Indústria do Cimento (2014). Relatório Anual 2013. Rio de Janeiro, 2014.

ANEXO A – Produção de metais: dados necessários para as estimativas de emissões

Tabela 42: Produção física de aço, alumínio e magnésio em t²⁵

					Alumínio				
Ano	Aço		9	Soderberg		P	rebaked Anode		Magnésio
		Aratu (BA)	Ouro Preto (MG)	Poços de Caldas (MG)	Alumínio (SP)	Barcarena (PA)	São Luís (MA)	Santa Cruz (RJ)	
1970	5.400.000	-	25.100	7.900	23.100	-	-	-	-
1971	5.980.000	-	27.200	25.000	28.500	-	-	-	-
1972	6.518.000	-	35.800	31.300	30.500	-	-	-	-
1973	7.149.000	-	41.700	30.400	39.600	-	-	-	-
1974	7.507.000	-	45.500	29.500	38.600	-	-	-	-
1975	8.308.000	-	55.600	29.900	35.800	-	-	-	-
1976	9.169.000	-	59.400	41.300	38.500	-	-	-	-
1977	11.164.000	-	59.300	59.400	48.400	-	-	-	-
1978	12.106.000	26.700	29.100	59.000	66.000	-	-	-	-
1979	13.891.000	27.600	52.100	82.300	76.100	-	-	-	-
1980	15.337.000	27.900	60.000	89.300	83.400	-	-	-	-
1981	13.226.000	27.700	59.700	88.500	80.500	-	-	-	-
1982	12.995.000	27.700	60.800	89.700	96.600	-	-	24.200	-
1983	14.671.000	45.400	61.700	90.200	120.300	-	-	83.100	-
1984	18.386.000	58.000	61.600	89.900	127.900	-	26.400	91.200	-
1985	20.455.000	58.400	61.700	90.400	135.700	8.700	103.700	90.800	-
1986	21.233.000	58.100	62.100	90.500	158.800	98.800	198.100	90.900	-
1987	22.228.000	50.900	61.800	89.700	169.000	166.000	215.300	90.800	*
1988	24.657.000	56.500	60.500	89.800	170.100	170.400	234.400	91.800	*
1989	25.055.000	56.500	59.100	90.200	169.100	169.200	252.100	91.700	*
1990	20.567.000	56.900	59.000	88.500	174.500	194.000	264.400	93.300	5.731
1991	22.617.000	56.800	56.800	89.500	204.300	288.000	351.200	93.000	5.805
1992	23.934.000	51.100	51.100	89.700	217.400	335.200	356.100	92.700	6.945
1993	25.207.000	28.900	48.300	90.200	218.100	345.000	356.600	84.900	10.046
1994	25.747.000	29.900	42.200	90.800	221.800	347.400	361.500	91.000	9.833
1995	25.076.000	38.400	41.500	90.000	220.500	341.100	363.700	92.900	10.043
1996	25.237.000	49.000	44.400	89.500	220.000	339.700	362.100	92.700	9.706
1997	26.153.000	45.700	47.600	90.000	221.000	338.000	353.400	93.400	12.692
1998	25.760.000	53.600	48.900	91.100	221.000	344.700	354.500	94.200	10.025
1999	24.996.000	52.700	49.700	91.300	233.900	361.200	367.400	93.400	9.753
2000	27.885.000	56.600	50.300	91.700	240.100	369.200	370.900	92.600	10.256
2001	26.717.000	47.600	44.500	69.700	230.400	334.800	325.100	79.900	9.291
2002	29.604.000	52.500	49.500	88.100	248.800	416.100	370.500	92.900	10.092
2003	31.147.000	56.300	50.200	94.900	313.800	435.900	334.900	94.600	10.693
2004	32.909.000	57.800	51.000	293.100	345.300	440.500	174.800	95.300	12.105
2005	31.610.000	57.000	50.600	95.300	370.400	449.500	380.800	94.000	14.337
2006	30.901.000	58.500	51.400	96.100	404.900	459.900	437.900	95.800	16.648
2007	33.782.000	58.600	48.400	96.400	450.900	459.000	447.800	93.700	18.181
2008	33.716.000	58.700	40.500	97.200	465.700	459.300	454.000	85.700	20.043
2009	26.506.000	52.100	48.200	65.300	471.300	453.800	434.100	10.200	21.904
2010	32.948.000	40.900	48.600	88.300	472.000	451.100	435.200	-	18.545
2011	35.220.000	-	47.100	87.900	409.000	458.100	438.300	-	17.848
2012	34.524.000	-	46.500	85.900	454.900	446.700	402.400	-	17.848
2013	34.163.000	-	29.200	69.400	413.900	452.300	339.500	-	17.848
2014	33.912.200	-	18.000	17.500	318.500	441.000	167.000	-	17.848

Fontes: Elaboração própria a partir de IABr, Abal e MCTI.

²⁵ A produção física de magnésio metálico entre 1987 e 1989 não estava disponível.

Tabela 43: Consumo de combustíveis redutores em ktep

		Fe	erro-gusa e A	(ço			Feri	roligas			Outros Na	io-Ferrosos	
Ano	Carvão Vapor	Carvão Vapor	Coque de Carvão	Coque de	Carvão Vegetal	Carvão Vapor	Coque de Carvão	Coque de Petróleo	Carvão Vegetal	Carvão Vapor	Coque de Carvão	Coque de Petróleo ²⁶	Carvão Vegetal
	5900	6000	Mineral	Petróleo	_	6000	Mineral			6000	Mineral		
1970	-	-	1.172,53	-	1.040,94	-	-	-	49,72	-	-	26,67	10,33
1971	-	-	1.155,98	-	1.207,54	-	-	-	52,95	-	-	32,17	12,91
1972	-	-	1.248,40	-	1.439,36	-	-	-	58,12	-	-	37,66	19,37
1973	-	-	1.263,57	-	1.520,08	-	19,31	-	63,28	-	-	42,38	21,31
1974	-	-	1.288,40	-	1.997,92	-	20,69	-	76,84	-	-	50,14	32,29
1975	-	-	1.578,09	-	2.476,42	-	24,14	-	91,05	-	-	55,10	43,91
1976	-	-	1.843,63	-	2.122,55	-	28,97	-	103,32	-	-	52,29	29,06
1977	-	-	2.440,24	-	2.119,32	-	34,49	-	122,69	-	-	117,83	23,89
1978	-	-	2.634,75	-	2.126,43	-	40,69	-	135,61	-	-	207,91	23,89
1979	-	-	3.018,23	-	2.619,77	-	41,38	-	157,56	-	-	206,34	14,85
1980	-	-	3.142,38	-	2.954,91	-	54,49	-	178,87	-	-	189,20	58,76
1981	-	-	2.630,61	-	2.574,57	-	25,52	-	248,61	-	6,21	107,81	69,09
1982	-	-	2.829,94	-	2.517,10	-	24,83	-	227,95	-	4,83	122,36	68,45
1983	-	-	3.349,99	-	2.824,47	-	22,76	-	298,98	-	5,52	111,18	102,03
1984	-	-	4.406,65	-	3.714,31	-	26,21	-	349,99	-	6,90	156,70	118,82
1985	-	-	4.901,18	-	3.819,56	-	27,59	-	421,67	-	10,35	199,09	122,69
1986	-	-	4.902,56	-	4.329,05	-	31,04	-	442,98	-	12,42	35,57	72,32
1987	-	-	5.510,89	-	4.245,75	-	27,59	-	450,08	-	6,90	76,64	171,77
1988	-	-	6.199,24	-	4.560,87	-	28,97	-	548,88	-	8,28	63,37	219,55
1989	-	-	6.037,84	-	5.326,72	-	33,11	-	663,18	-	10,35	56,61	257,01
1990	-	-	4.936,35	-	4.365,21	-	25,52	-	361,62	-	71,73	39,76	254,42
1991	-	-	5.946,80	-	3.680,73	-	26,21	-	487,53	-	67,59	22,07	204,05
1992	-	-	6.022,67	-	3.431,47	-	43,45	-	413,27	-	62,76	12,30	205,35
1993	-	173,83	6.275,11	-	3.761,44	-	42,07	-	500,45	-	175,19	65,74	113,00
1994	-	261,86	6.459,27	1,75	3.882,20	-	39,31	-	437,17	61,54	87,59	48,28	122,69
1995	-	268,51	6.604,80	13,97	3.562,56	14,05	35,18	-	380,99	14,05	168,29	106,87	145,94
1996	-	491,16	6.582,04	5,24	3.090,52	14,79	39,31	-	577,94	96,90	165,53	147,14	31,00
1997	-	840,30	6.571,69	89,05	3.236,46	4,44	33,80	-	387,44	96,90	80,70	66,40	25,83
1998	-	1.149,50	6.401,33	164,04	2.968,47	-	6,90	125,65	324,81	80,63	75,18	19,55	21,96
1999	-	1.501,60	5.701,26	203,31	3.389,50	34,03	4,14	77,66	360,97	111,70	75,18	16,72	2,58
2000	-	1.647,32	6.413,05	241,70	3.660,06	36,25	5,52	89,00	430,06	158,30	86,91	27,60	5,81
2001	-	1.583,71	6.221,31	330,70	3.438,57	36,25	18,62	89,87	263,46	122,79	86,91	27,59	5,81
2002	-	1.898,08	6.582,04	305,40	3.561,26	43,49	7,17	87,26	334,60	160,29	83,95	14,69	7,75
2003	-	2.178,56	6.470,13	454,83	4.056,88	16,28	78,66	122,22	531,66	112,48	108,33	59,29	7,75
2004	-	2.451,62	6.573,63	363,17	4.901,85	-	106,26	108,25	558,14	113,96	136,62	39,69	7,75
2005	-	2.373,85	6.066,54	424,94	4.803,70	-	92,16	121,86	570,20	116,18	138,89	46,37	7,90
2006	-	2.352,24	5.762,88	416,42	4.635,57	-	93,15	123,09	575,33	112,70	146,28	43,40	8,46
2007	-	2.512,30	6.319,71	493,29	4.774,64	-	104,19	143,55	615,60	119,14	151,11	77,49	8,88
2008	-	2.654,68	6.289,35	488,88	4.679,17	-	118,68	143,17	627,88	37,74	149,04	87,82	9,12
2009	-	2.045,97	4.968,59	487,20	2.723,73	-	91,67	142,68	484,99	34,91	137,86	142,67	8,43
2010	-	1.769,28	7.153,21	39,15	3.371,98	_	107,43	167,21	568,36	615,80	152,10	149,23	9,30
2011	-	1.921,44	7.750,09	41,95	3.491,57	_	96,24	150,31	509,18	790,32	231,43	290,64	8,98
2012	-	1.854,19	7.494,89	40,03	3.338,22	_	93,35	147,24	498,87	750,83	278,70	259,34	10,26
2013	-	1.807,85	7.308,90	40,18	3.021,26	_	83,84	136,74	468,79	746,68	275,97	254,39	11,27
2014	_	1.871,32	7.521,87	40,74	2.783,48	_	78,29	127,03	436,17	782,88	278,76	300,45	13,64

Fontes: Elaboração própria a partir de MME e MCTI.

-

²⁶ Não inclui o consumo de coque de petróleo na produção de ânodos utilizados na produção de alumínio metálico.

Tabela 44: Fatores de emissão de combustíveis redutores

Combustível Redutor	tCO₂/ktep	kgCO/TJ	kgCH ₄ /TJ	kgNO _x /TJ	kgN₂O/TJ	kgCOVNM/TJ
Carvão Vapor 5900	3.961	150	10	300	1,5	20
Carvão Vapor 5900	3.961	9	10	209	1,5	1
Coque de Carvão Mineral	4.480	931	10	173	1,5	89
Coque de Petróleo	4.082	931	3	173	0,6	89
Carvão Vegetal	4.460	4.000	200	100	4,0	100

Fontes: MCTI.

Tabela 45: Consumo de carbonatos como fundentes em altos-fornos da produção de ferro-gusa e aço em toneladas

Ano	Calcário	Dolomita
1970	622.931	269.646
1971	689.838	298.607
1972	751.901	325.472
1973	824.691	356.981
1974	865.989	374.857
1975	958.391	414.855
1976	1.057.714	457.848
1977	1.287.852	557.467
1978	1.396.519	604.505
1979	1.602.432	693.638
1980	1.769.239	765.843
1981	1.525.719	660.432
1982	1.499.072	648.897
1983	1.692.411	732.587
1984	2.120.964	918.093
1985	2.359.639	1.021.407
1986	2.449.387	1.060.256
1987	2.564.168	1.109.941
1988	2.844.372	1.231.232
1989	2.890.284	1.251.105
1990	2.372.559	1.027.000
1991	2.716.950	951.000
1992	2.402.022	939.000
1993	2.044.939	1.008.000
1994	1.833.585	1.194.000
1995	2.005.131	1.531.000
1996	2.264.525	1.237.000
1997	2.676.389	1.470.000
1998	2.415.793	1.565.000
1999	2.160.386	1.506.000
	2.468.743	1.106.000
2000 2001	2.373.598	867.000
	2.351.326	1.178.000
2002		1.579.000
2003	2.329.998	
2004	2.306.998	1.802.000
2005	2.265.598	1.319.000
2006	1.296.908	1.145.000
2007	1.431.431	1.202.000
2008	1.849.898	1.493.000
2009	2.008.690	1.653.000
2010	3.657.152	2.603.000
2011	4.170.265	2.622.000
2012	3.694.050	1.722.000
2013	495.050	1.373.000
2014	495.050	1.373.000

Fontes: Elaboração própria a partir de MME e MCTI.

ANEXO B - Produção física de cimento

Tabela 46: Produção física de cimento em kt

Ano	RO	AM	PA	то	MA	PI	CE	RN	PB	PE	AL	SE	BA
1970	-	-	-	-	-	-	-	-	-	-	-	-	-
1971	-	-	101,01	-	-	-	83,59	-	188,02	577,19	-	76,88	235,30
1972	-	-	195,14	-	-	-	106,86	53,26	292,64	539,46	-	131,60	272,60
1973	-	-	142,23	-	-	-	95,39	149,60	391,69	616,00	-	152,86	390,64
1974	-	-	167,63	-	40,38	-	93,96	177,83	383,31	671,91	-	152,88	481,11
1975	-	-	211,83	-	105,73	-	83,19	168,97	377,48	673,30	-	152,14	499,75
1976	-	-	237,55	-	176,46	-	102,18	208,04	392,73	804,75	-	155,52	589,28
1977	-	-	273,29	-	175,20	-	119,09	207,46	424,68	798,84	-	158,67	687,99
1978	-	-	300,03	-	198,37	-	143,14	240,76	442,66	818,53	223,94	155,80	673,75
1979	-	-	326,04	-	200,10	-	162,55	250,50	468,25	858,11	281,39	158,62	758,70
1980	-	-	315,49	-	200,98	-	354,11	252,79	456,79	1.038,63	315,23	156,65	813,14
1981	-	-	388,00	-	170,55	-	453,56	192,43	463,04	980,84	272,07	160,01	799,81
1982	-	-	510,00	-	217,53	-	511,51	208,00	458,43	1.068,16	313,17	133,67	836,15
1983	-	-	400,00	-	171,66	-	476,04	162,76	337,75	788,11	256,96	145,85	697,02
1984	-	-	359,81	-	203,47	-	431,40	158,48	282,21	795,87	221,15	328,81	572,32
1985	-	-	336,81	-	207,68	-	493,45	237,42	317,16	825,96	249,18	398,34	553,94
1986	-	245,34	383,00	-	242,22	-	541,17	248,35	380,08	949,59	256,42	495,23	630,89
1987	-	320,82	387,99	-	225,84	-	623,61	253,46	381,75	922,91	274,10	453,61	556,22
1988	-	400,06	336,38	-	224,59	-	663,94	228,25	408,99	913,91	267,55	387,31	491,68
1989	-	402,51	386,97	-	213,20	-	634,29	180,40	731,90	571,73	290,39	394,17	514,79
1990	-	387,30	321,87	-	131,16	-	603,20	135,00	1.108,58	405,57	342,20	458,97	508,16
1991	-	404,64	224,42	-	174,01	-	575,79	208,11	1.097,35	462,16	344,37	437,71	514,77
1992	-	292,61	262,71	-	132,77	-	551,39	177,72	885,03	429,60	327,00	449,80	512,71
1993	-	337,19	303,59	-	104,50	-	533,08	174,00	955,79	417,72	282,60	479,38	626,19
1994	-	334,27	341,47	-	153,64	-	473,60	172,57	930,77	433,94	289,42	471,65	901,45
1995	-	318,25	311,14	-	133,05	-	689,54	167,35	903,52	449,90	269,39	400,72	912,03
1996	-	368,48	332,85	-	181,54	-	750,50	201,89	996,26	465,80	289,99	430,91	851,27
1997	-	431,42	366,89	-	269,12	-	1.147,31	314,36	1.463,61	440,74	366,70	996,53	837,30
1998	-	501,06	521,25	-	334,45	-	1.154,08	343,65	1.955,27	507,21	561,30	1.399,88	931,06
1999	-	562,23	548,68	-	403,60	-	1.193,25	332,75	2.029,68	510,63	563,51	1.843,14	804,90
2000	-	623,46	546,55	-	332,65	-	1.469,19	355,26	1.640,14	499,29	490,89	1.891,13	690,51
2001	-	625,39	557,69	-	291,22	122,63	1.504,44	355,35	1.686,98	503,98	456,31	1.682,63	636,84
2002	-	630,90	557,00	-	313,58	306,37	1.468,85	338,04	1.577,01	541,89	417,74	1.729,38	653,30
2003	-	603,00	561,00	-	254,00	304,00	1.230,00	330,00	1.364,00	397,00	358,00	1.771,00	479,00
2004	-	628,00	621,00	-	302,00	284,00	1.324,00	334,00	1.477,00	409,00	375,00	1.975,00	469,00
2005	-	627,00	720,00	-	308,00	413,00	1.443,00	365,00	1.609,00	512,00	437,00	2.068,00	555,00
2006	-	634,00	821,00	-	316,00	344,00	1.480,00	378,00	1.811,00	547,00	458,00	2.366,00	599,00
2007	-	683,00	935,00	-	336,00	411,00	1.628,00	438,00	1.919,00	677,00	532,00	2.763,00	695,00
2008	-	776,00	1.315,00	-	358,00	501,00	1.714,00	450,00	2.073,00	781,00	556,00	2.841,00	814,00
2009	111,00	654,00	1.204,00	131,00	358,00	588,00	1.767,00	461,00	1.844,00	821,00	409,00	2.691,00	1.021,00
2010	576,00	725,00	1.502,00	470,00	384,00	627,00	1.863,00	463,00	2.162,00	848,00	674,00	3.031,00	1.179,00
2011	696,00	813,00	1.553,00	523,00	425,00	609,00	1.985,00	658,00	2.025,00	1.079,00	706,00	3.181,00	1.270,00
2012	713,00	785,00	1.636,00	564,00	883,00	655,00	2.136,00	1.293,00	2.462,00	1.257,00	703,00	3.080,00	1.346,00
2013	553,29	771,95	1.708,52	510,41	824,74	646,86	1.766,24	1.544,32	2.400,60	1.200,39	818,06	3.309,92	1.525,77
2014	561,09	782,84	1.732,63	517,61	836,38	655,99	1.791,16	1.566,11	2.434,47	1.217,32	829,60	3.356,62	1.547,30

Fontes: Elaboração própria a partir de SNIC.

Tabela 47: Produção física de cimento em kt (continuação)

Ano	MT	MS	GO	DF	MG	ES	RJ	SP	PR	SC	RS	NA	BR
1970	-	-	-	-	-	-	-	-	-	-	-	9.450,00	9.450,00
1971	216,43	-	157,16	-	2.292,64	335,37	1.805,70	2.752,81	490,61	158,57	331,37	-	9.802,64
1972	230,45	-	213,73	15,25	2.808,08	364,57	1.915,85	3.062,43	574,49	207,58	397,45	-	11.381,43
1973	235,27	-	312,72	287,37	3.590,66	361,22	1.930,17	3.338,75	736,44	207,34	459,23	-	13.397,58
1974	258,08	-	417,84	280,76	4.078,63	360,81	1.980,12	3.665,30	917,22	221,27	570,61	-	14.919,64
1975	338,67	-	479,23	355,32	5.284,14	363,57	1.974,54	3.890,83	948,91	244,37	585,48	-	16.737,46
1976	352,15	-	490,17	416,28	6.318,07	651,24	2.264,73	4.141,20	1.021,13	242,07	583,26	-	19.146,79
1977	337,29	-	553,83	529,69	6.561,02	659,36	2.550,49	4.748,15	1.405,47	319,67	612,75	-	21.122,93
1978	384,36	-	567,45	510,61	6.789,87	746,58	2.646,62	5.967,43	1.430,26	344,83	617,90	-	23.202,87
1979	345,92	-	594,50	586,22	7.240,53	653,93	2.833,90	6.517,81	1.581,02	364,77	690,80	-	24.873,65
1980	-	373,37	833,93	619,85	8.026,17	663,46	2.905,13	6.863,75	1.905,90	353,85	743,61	-	27.192,80
1981	-	326,50	801,89	546,09	7.621,87	797,31	2.526,99	6.501,88	1.912,24	336,49	799,51	-	26.051,07
1982	-	289,13	812,85	528,85	7.061,35	757,54	2.899,86	6.008,22	1.898,69	290,87	840,13	-	25.644,12
1983	-	255,96	689,97	505,44	5.259,25	522,03	2.699,58	4.900,62	1.548,49	248,61	803,85	-	20.869,94
1984	-	306,16	661,22	509,20	5.625,80	550,96	2.051,84	4.047,37	1.386,71	237,42	767,08	-	19.497,27
1985	-	330,67	741,68	688,06	5.819,86	693,74	1.866,04	4.120,26	1.569,20	273,34	911,75	-	20.634,51
1986	-	334,24	931,94	908,43	6.925,41	835,09	2.514,19	5.014,49	1.912,74	370,29	1.138,03	-	25.257,14
1987	-	331,52	868,70	883,92	6.827,53	759,22	2.510,25	5.234,31	2.016,61	420,89	1.214,76	-	25.468,03
1988	-	288,32	1.001,42	858,79	6.806,38	840,21	2.310,66	5.162,20	2.048,24	428,79	1.261,11	-	25.328,77
1989	-	295,14	1.033,15	872,85	6.780,14	962,38	2.440,11	5.142,98	2.199,90	501,02	1.372,01	-	25.920,01
1990	-	305,39	933,37	849,50	6.618,93	995,68	2.403,44	5.224,25	2.236,00	531,12	1.348,68	-	25.848,36
1991	118,97	283,99	987,51	816,41	7.380,39	1.087,82	2.462,00	5.554,86	2.304,58	554,63	1.495,63	-	27.490,09
1992	299,88	230,85	923,34	667,62	6.185,20	847,72	2.022,92	4.746,65	2.152,55	483,63	1.321,05	-	23.902,73
1993	456,03	324,97	963,06	757,85	6.164,89	812,80	2.126,71	4.744,71	2.689,41	396,20	1.192,26	-	24.842,92
1994	485,01	465,01	984,02	798,34	6.127,69	840,28	2.077,07	4.968,18	2.264,70	345,26	1.371,28	-	25.229,61
1995	446,91	497,28	889,41	834,89	7.074,87	864,91	2.485,71	5.889,86	2.728,02	536,30	1.453,31	-	28.256,30
1996	540,09	591,70	1.124,89	1.159,17	9.079,34	1.196,32	2.990,65	7.639,25	3.356,55	479,64	1.569,97	-	34.597,05
1997	553,95	772,93	1.069,84	1.235,14	9.275,15	1.526,19	3.085,63	8.077,77	3.746,62	458,84	1.660,03	-	38.096,04
1998	597,85	787,62	824,64	1.539,74	9.223,17	1.609,88	3.212,82	7.806,13	3.992,11	373,10	1.765,66	-	39.941,92
1999	512,76	716,37	722,78	1.777,48	9.385,44	1.490,99	3.139,14	7.826,75	3.792,61	301,38	1.775,87	-	40.233,92
2000	572,73	792,59	713,53	1.898,97	9.001,26	1.424,28	2.916,62	7.753,43	3.814,60	350,83	1.780,83	342,00	39.900,73
2001	650,28	751,02	730,57	1.988,70	8.895,89	1.720,14	2.742,69	7.132,49	4.099,86	388,29	1.791,10	139,00	39.453,48
2002	693,86	707,71	730,19	1.937,10	8.723,94	1.848,23	2.702,21	6.574,88	4.160,10	402,63	1.751,87	160,00	38.926,77
2003	624,00	618,00	647,00	1.646,00	8.253,00	1.833,00	2.402,00	5.386,00	3.944,00	263,00	1.683,00	172,00	35.122,00
2004	602,00	653,00	716,00	2.091,00	8.186,00	1.753,00	2.382,00	5.327,00	4.059,00	229,00	1.575,00	213,00	35.984,00
2005	637,00	653,00	789,00	2.322,00	9.454,00	1.664,00	2.358,00	5.837,00	4.018,00	209,00	1.473,00	234,00	38.705,00
2006	642,00	670,00	766,00	2.492,00	10.188,00	1.711,00	2.618,00	7.194,00	3.923,00	222,00	1.511,00	204,00	41.895,00
2007	819,00	746,00	832,00	2.824,00	11.368,00	1.921,00	2.794,00	7.454,00	4.548,00	282,00	1.661,00	285,00	46.551,00
2008	875,00	878,00	1.052,00	2.660,00	12.654,00	2.344,00	3.129,00	8.180,00	5.313,00	406,00	2.034,00	266,00	51.970,00
2009	949,00	872,00	1.149,00	2.690,00	12.979,00	2.099,00	3.160,00	7.913,00	5.332,00	364,00	1.940,00	240,00	51.747,00
2010	890,00	997,00	1.324,00	3.159,00	14.162,00	2.370,00	4.174,00	9.035,00	5.685,00	455,00	2.122,00	240,00	59.117,00
2011	973,00	1.177,00	1.392,00	3.540,00	15.240,00	2.546,00	4.974,00	9.564,00	5.746,00	988,00	2.190,00	240,00	64.093,00
2012	1.031,00	1.123,00	1.599,00	3.882,00	16.465,00	2.616,00	5.087,00	9.428,00	5.589,00	1.979,00	2.225,00	272,00	68.809,00
2013	949,15	1.542,31	1.664,25	4.122,08	14.586,90	2.666,99	3.258,49	9.973,76	6.142,75	1.783,32	2.227,62	3.721,00	70.219,68
2014	962,54	1.564,07	1.687,73	4.180,24	14.792,70	2.704,62	3.304,46	10.114,48	6.229,42	1.808,48	2.259,05	3.773,50	71.210,41

Fontes: Elaboração própria a partir de SNIC.

ANEXO C - Produção física de cal e vidro

Tabela 48: Produção física de cal por tipo e de vidro virgem em kt

		Cal		\#1 (; \
Ano	Calcítica	Dolomítica	Magnesiana	Vidro (virgem)
1970	1.316,02	174,95	291,58	579,05
1971	1.356,72	180,36	300,60	600,53
1972	1.383,86	183,97	306,61	622,81
1973	1.451,69	192,98	321,64	645,92
1974	1.492,39	198,39	330,66	669,89
1975	1.492,39	198,39	330,66	694,74
1976	1.533,09	203,81	339,68	720,52
1977	1.926,54	256,11	426,85	747,26
1978	2.306,43	306,61	511,02	774,98
1979	2.618,47	348,09	580,15	803,74
1980	2.645,61	351,70	586,17	833,56
1981	2.604,90	346,29	577,15	864,49
1982	2.645,61	351,70	586,17	896,56
1983	2.672,74	355,31	592,18	929,83
1984	2.781,28	369,74	616,23	964,33
1985	3.025,49	402,20	670,33	1.000,11
1986	2.984,79	396,79	661,32	1.037,22
1987	3.079,76	409,41	682,36	1.075,70
1988	3.174,73	422,04	703,40	1.115,62
1989	3.242,56	431,06	718,43	1.157,01
1990	3.323,97	441,88	736,46	1.248,22
1991	3.335,79	466,60	777,67	1.248,22
1992	3.585,12	463,98	773,31	908,20
1993	3.828,99	506,08	843,46	1.091,15
1994	3.782,37	460,55	767,58	991,09
1995	3.736,21	478,82	798,03	1.196,98
1996	3.818,73	512,60	854,33	1.215,40
1997	3.968,91	499,37	832,28	1.320,07
1998	3.774,26	481,89	803,15	1.319,81
1999	4.072,39	470,08	783,46	1.506,54
2000	4.935,31	454,96	758,27	1.671,08
2001	4.704,69	449,53	749,21	1.677,89
2002	4.924,87	436,30	727,17	1.927,41
2003	5.052,44	438,66	731,10	1.926,31
2004	5.431,97	497,95	829,92	2.114,03
2005	5.398,85	445,28	742,13	2.160,79
2006	5.452,00	450,00	750,00	1.843,57
2007	5.705,43	473,15	788,58	1.843,88
2008	5.726,48	476,22	793,70	1.900,63
2009	4.902,67	488,50	814,17	1.920,14
2010	6.000,98	493,46	822,44	2.121,77
2011	6.525,53	479,29	798,82	2.456,96
2012	6.623,75	473,62	789,37	2.456,96
2013	6.708,21	479,66	799,44	2.456,96
2014	6.708,21	479,66	799,44	2.456,96

Fontes: Elaboração própria a partir de MME e MCTI.

ANEXO D - Produção, importação, exportação e consumo de barrilha

Tabela 49: Dados de atividade utilizados nas estimativas de emissões do consumo de barrilha em t

Ano	Produção	Importação	Exportação	Consumo
1970	110.665	3.097	2	113.761
1971	125.401	27.156	-	152.557
1972	127.595	22.582	-	150.177
1973	135.103	43.022	-	178.125
1974	153.048	44.916	1	197.963
1975	146.126	63.001	2	209.125
1976	150.012	70.809	2	220.819
1977	141.022	143.681	-	284.703
1978	120.651	183.722		304.373
1979	118.659	200.702		319.361
1980	175.701	203.446	21	379.126
1981	188.220	103.241	-	291.461
1982	199.000	98.784	22	297.762
1983	210.079	62.766	7	272.838
1984	214.604	162	22	214.744
1985	179.327	110.680	22	289.985
1986	199.449	155.872	5	355.316
1987	171.000	302.252	43	473.209
1988	184.295	245.796	2	430.089
1989	196.526	285.855	-	482.381
1990	195.893	242.788	-	438.681
1991	207.607	253.610	-	461.217
1992	220.596	179.785	-	400.381
1993	231.390	218.954	10	450.334
1994	219.471	231.827	255	451.043
1995	203.950	392.071	2	596.019
1996	211.043	306.932	9	517.966
1997	206.273	334.398	3	540.668
1998	201.866	358.459	4	560.321
1999	208.834	352.073	4	560.903
2000	190.616	393.845	4	584.457
2001	194.837	430.797	400	625.234
2002	-	424.780	609	424.171
2003	-	471.938	558	471.380
2004	-	473.063	1	473.062
2005	-	597.888	2	597.886
2006	-	742.140	2	742.138
2007	-	804.105	2.192	801.913
2008	-	861.195	20	861.175
2009	-	770.854	560	770.294
2010	-	954.675	47	954.629
2011	-	904.506	602	903.904
2012	-	1.062.559	704	1.061.855
2013	-	1.041.162	4.810	1.036.352
2014	_	1.041.162	4.810	1.036.352

Fontes: Elaboração própria a partir de Abiquim e MCTI.

ANEXO E - Produção física de substâncias químicas

Tabela 50: Produção física em kt por tipo de substância química²⁷

Ano	Amônia	Ácido Nítrico ²⁸	Ácido Adípico	Caprolactama	Metanol	Eteno	Cloreto Vinila	Dicloroetano	Óxido de Eteno	Acrilonitrila	Coque de Petróleo Calcinado	Negro-de- Fumo	ABS
1970	28,87	60,42	23,00	-	15,19	17,14	47,60	-	-	-	-	49,10	-
1971	130,26	93,94	22,65	-	22,43	22,31	48,40	-	-	-	-	56,43	-
1972	146,81	136,84	28,70	-	35,30	70,08	47,60	-	-	-	-	60,46	-
1973	179,00	188,41	30,65	-	48,74	222,11	83,59	-	-	-	-	64,44	-
1974	232,89	260,28	34,69	-	52,38	269,47	94,90	-	29,95	-	-	78,79	-
1975	205,12	248,15	35,84	-	31,47	300,24	102,66	-	26,32	-	-	96,97	0,62
1976	176,49	280,13	48,12	-	74,48	349,43	94,22	-	28,36	-	-	111,27	5,71
1977	183,99	255,64	51,46	2,95	81,28	362,17	107,87	-	30,93	-	-	121,73	5,99
1978	258,82	264,41	53,66	20,17	95,17	398,77	106,45	-	36,56	-	-	125,46	8,51
1979	338,87	259,41	54,05	28,97	107,18	631,25	133,15	-	87,27	3,03	-	132,38	11,33
1980	443,69	285,28	53,23	34,95	126,60	715,51	259,22	417,78	112,20	49,73	-	148,81	13,56
1981	462,70	261,70	50,41	26,54	120,36	719,60	231,34	373,47	103,86	56,53	-	125,75	10,70
1982	580,00	231,03	51,31	33,35	127,81	852,51	290,15	548,48	124,03	57,11	-	122,29	11,45
1983	904,40	240,87	54,56	36,29	136,07	1.163,28	281,56	622,55	107,28	57,58	-	121,95	21,00
1984	1.070,15	266,73	43,22	42,46	137,87	1.261,96	303,04	645,04	143,59	69,59	-	141,36	24,65
1985	1.158,42	273,62	37,96	42,44	156,44	1.303,94	324,07	659,50	147,72	70,30	226,20	155,16	25,04
1986	1.081,57	292,36	44,20	47,42	167,21	1.305,78	327,11	649,63	148,92	69,07	226,20	170,24	25,43
1987	1.167,01	305,71	41,88	53,69	168,63	1.390,25	347,28	647,27	136,98	75,14	226,20	175,52	25,83
1988	1.148,44	290,61	41,05	51,87	168,31	1.435,76	382,35	715,71	147,94	78,25	226,20	187,45	26,22
1989	1.201,01	322,44	41,94	55,14	163,19	1.489,41	499,15	505,50	148,39	77,58	226,20	192,22	26,61
1990	1.152,56	295,82	31,95	42,06	168,56	1.499,71	480,42	538,18	127,22	78,00	226,20	178,40	27,00
1991	1.012,11	313,91	41,68	47,19	206,45	1.448,81	331,90	369,54	150,35	63,47	261,61	182,57	26,00
1992	1.038,44	310,53	38,54	41,70	204,45	1.505,57	333,78	420,54	142,58	74,16	262,89	186,42	28,00
1993	1.153,34	325,57	51,26	50,82	223,50	1.709,46	381,82	495,14	149,48	74,26	263,86	197,25	32,00
1994	1.156,83	326,49	51,83	50,84	222,31	1.895,75	409,76	499,93	163,47	76,52	299,64	204,30	32,00
1995	1.222,35	332,84	55,86	52,61	205,13	1.881,08	388,91	494,36	161,33	79,83	318,07	200,55	33,00
1996	1.201,05	335,85	41,55	54,71	223,77	1.875,68	433,27	512,18	149,06	78,44	320,16	202,18	33,00
1997	1.252,72	343,13	35,77	56,02	226,37	2.126,30	419,21	567,24	217,97	87,09	267,13	207,77	33,00
1998	1.176,43	332,56	62,06	42,97	210,20	2.254,66	414,68	545,10	259,02	64,06	276,51	211,14	33,00
1999	1.331,11	335,07	61,57	50,50	215,49	2.415,98	426,17	558,93	261,27	79,71	251,87	221,50	33,00
2000	1.139,11	336,03	64,86	56,01	211,58	2.633,82	424,73	541,34	256,04	87,36	265,71	229,86	33,00
2001	956,00	331,81	51,49	48,55	242,22	2.462,16	375,40	427,68	278,16	74,98	222,61	215,36	33,00
2002	1.073,16	346,23	65,93	57,52	240,10	2.414,22	389,01	492,58	251,35	78,36	219,18	222,20	33,00
2003	1.157,58	349,57	59,98	48,85	240,87	2.575,89	567,11	540,19	280,73	76,20	212,60	229,86	33,00
2004	1.324,48	357,52	86,96	50,47	273,60	2.702,53	588,95	566,71	296,64	83,54	244,65	278,33	33,00
2005	1.316,15	363,42	75,15	49,66	240,36	2.699,83	609,21	581,37	297,18	76,78	300,83	280,14	33,00
2006	1.347,75	355,71	82,61	44,91	276,79	3.135,11	687,86	547,72	289,72	84,81	319,94	280,14	33,00
2007	1.278,12	356,66	88,86	49,59	234,60	3.223,60	685,23	536,52	309,67	88,04	351,52	354,09	33,00
2008	1.240,53	390,83	85,02	55,39	216,36	2.903,35	675,12	549,37	267,30	67,91	332,68	390,42	33,00
2009	1.079,15	423,76	87,20	13,28	109,23	3.082,51	684,31	581,61	266,01	86,38	362,45	385,60	33,00
2010	1.191,04	360,08	86,29	-	206,00	3.276,63	724,93	578,20	280,95	94,50	485,06	400,06	33,00
2011	1.366,23	352,22	86,29	-	212,66	3.119,16	700,21	473,60	280,95	94,50	500,96	400,06	33,00
2012	1.204,38	344,53	86,29	-	167,13	3.171,46	700,21	522,50	280,95	94,50	463,17	400,06	33,00
2013	1.236,21	329,18	86,29	-	115,28	3.372,83	700,21	523,79	280,95	94,50	485,97	400,06	33,00
2014	1.236,21	329,18	86,29	-	115,28	3.372,83	700,21	523,79	280,95	94,50	485,97	400,06	33,00

Fontes: Elaboração própria a partir de Abiquim e MCTI.

A produção física de carbureto de cálcio não é disponibilizada pela White Martins.

A produção física apresentada na tabela corresponde apenas àquela responsável pelas emissões associadas ao processo.

Tabela 51: Produção física em kt por tipo de substância química (continuação)

Ano	Anidrido Ftálico	Borracha de butadieno estireno (SBR)	Estireno	Etilbenzeno	Formaldeído	PVC	Poliestireno	Polietileno PEAD	Polietileno PEBD	Polietileno PELBD	Polipropileno	Propeno	Rocha Fosfática
1970	12,94	78,52	15,85	-	32,07	46,20	24,55	6,72	25,49	-	-	3,96	1.165,35
1971	16,30	78,52	19,54	-	45,60	52,50	31,88	8,05	30,52	-	-	0,94	1.221,20
1972	19,25	78,52	32,08	-	75,47	74,60	44,01	10,31	39,10	-	-	22,06	1.279,69
1973	29,09	105,13	48,19	-	98,89	114,66	52,40	23,40	126,66	-	-	129,21	1.340,96
1974	32,89	111,80	50,00	-	103,81	106,01	52,40	27,46	158,48	-	-	96,04	1.405,12
1975	27,49	118,40	49,30	-	112,08	136,79	47,80	33,08	159,31	-	-	187,52	1.472,33
1976	35,91	124,99	61,77	-	125,33	151,71	88,20	42,57	186,98	-	-	179,81	1.542,71
1977	36,05	131,59	64,07	-	114,75	160,20	85,41	53,62	199,53	-	-	232,48	1.616,41
1978	44,16	138,18	145,43	-	118,45	172,90	95,83	52,86	218,55	-	24,52	237,89	1.693,60
1979	59,48	144,78	197,77	-	138,07	210,66	132,72	119,11	290,34	-	95,32	376,49	1.774,43
1980	62,58	151,37	193,47	221,18	185,89	340,75	124,52	128,67	307,37	-	119,61	418,14	1.859,07
1981	58,80	157,97	187,07	197,36	113,60	259,71	99,30	114,37	323,83	-	129,93	436,95	1.947,71
1982	65,32	167,04	200,71	228,11	152,36	318,40	105,88	135,05	345,88	-	155,45	461,21	2.040,52
1983	59,91	161,55	197,52	242,28	159,25	294,32	96,65	198,74	479,24	-	199,61	590,66	2.137,71
1984	62,63	183,90	225,75	288,38	185,28	326,39	116,11	208,20	508,53	-	231,82	673,61	2.239,48
1985	69,91	191,43	233,47	293,93	191,69	361,16	150,84	214,36	585,46	-	243,35	824,58	2.346,03
1986	73,80	205,82	268,04	319,89	225,82	406,17	185,20	234,25	608,51	-	248,24	719,31	2.457,59
1987	71,84	201,24	268,80	372,76	225,01	451,56	157,60	261,37	630,55	-	279,61	780,72	2.574,40
1988	88,62	194,09	281,58	416,08	219,02	464,20	156,24	269,28	622,34	-	293,49	765,18	2.696,70
1989	81,72	177,11	312,72	432,89	239,39	542,10	176,88	268,39	601,41	-	295,14	835,84	2.824,75
1990	66,00	185,00	306,00	441,00	177,00	504,00	134,00	322,00	626,00	-	304,00	794,00	2.817,00
1991	77,00	189,00	280,00	314,00	195,00	500,00	155,00	339,00	585,00	-	356,00	779,00	3.280,00
1992	77,00	196,00	254,00	287,00	206,00	489,00	138,00	311,00	570,00	-	375,00	827,00	2.825,00
1993	76,00	192,00	223,00	238,00	245,00	511,00	163,00	430,00	609,00	104,00	478,00	975,00	3.420,00
1994	91,00	209,00	262,00	346,00	262,00	593,00	154,00	479,00	609,00	133,00	522,00	1.086,00	3.937,00
1995	75,00	221,00	273,00	407,00	276,00	581,00	169,00	495,00	595,00	150,00	558,00	1.077,00	3.888,00
1996	87,00	211,00	236,00	259,00	282,00	627,00	149,00	529,00	561,00	170,00	590,00	1.085,00	3.823,00
1997	86,00	239,00	232,00	250,00	292,00	632,00	133,00	644,00	664,00	177,00	636,00	1.219,00	4.275,61
1998	74,00	206,00	228,00	263,00	348,00	632,00	139,00	693,00	649,00	174,00	708,00	1.271,00	4.421,40
1999	90,00	244,00	227,00	240,00	396,00	658,00	165,00	764,00	659,00	266,00	787,00	1.299,00	4.343,64
2000	88,00	237,00	406,00	437,00	357,00	648,00	176,00	891,00	647,00	334,00	848,00	1.409,00	4.725,11
2001	91,00	205,00	403,00	439,00	320,00	538,00	239,00	819,00	636,00	270,00	832,00	1.340,00	4.805,12
2002	95,00	233,00	400,00	422,00	353,00	602,00	314,00	811,00	608,00	313,00	891,00	1.390,00	5.083,70
2002	98,00	246,00	388,00	428,00	501,00	604,00	292,00	811,00	672,00	359,00	1.012,00	1.559,00	5.584,00
2003	103,00	261,00	445,00	468,00	540,00	630,00	319,00	833,00	673,00	407,00	1.130,00	1.747,00	5.690,00
2004	85,00	212,00	405,00	395,00	509,00	640,00	317,00	812,00	682,00	442,00	1.212,00	1.731,00	5.631,00
2005	94,00	231,00	460,00	430,00	491,00	663,00	347,00	956,00	803,00	521,00	1.253,00	1.804,00	4.875,57
2007	94,00	231,00	430,00	430,00	473,00	686,00	376,00	1.100,00	924,00	599,00	1.293,00	1.876,00	5.519,84
2007	94,00	231,00	324,00	430,00	528,00	699,00	345,00	973,00	817,00	530,00	1.626,00	1.698,00	5.160,06
2008	94,00	231,00	455,00	430,00	625,00	689,00	367,00	1.049,00	880,00	571,00	1.486,00	2.086,00	4.439,24
2009	94,00	231,00	440,00	430,00	491,00	725,00	390,00	1.049,00	917,00	595,00	1.586,00	2.192,00	5.071,68
	94,00	231,00	424,00	430,00	491,00	696,00	376,00	1.092,00	917,00 875,00	568,00	1.565,00	2.192,00	4.883,21
2011		231,00	424,00 442,05	430,00	481,00 385,65	758,59	376,00	1.042,00	875,00 859,38	557,86	1.646,62	2.200,00	4.883,21
2012	94,00												
2013	94,00	231,00	439,91	430,00	325,60	865,67	384,26	1.047,57	879,67 870,67	571,03 571,03	1.627,15	2.128,13	4.108,85
2014	94,00	231,00	439,91	430,00	325,60	865,67	384,26	1.047,57	879,67	571,03	1.627,15	2.128,13	4.108,85

Fontes: Elaboração própria a partir de Abiquim e MCTI.

ANEXO F - Capacidade instalada de produção de substâncias químicas

Tabela 52: Capacidade Instalada de Amônia por UF em toneladas

Ano	Fonte	ВА	SE	MG	RJ	PR	SP
1975	Anuário Abiquim 1979	66.000	0	0	0	0	193.000
1980	Anuário Abiquim 1982	365.000	0	0	2.900	0	193.000
1984	Anuário Abiquim 1985	664	.620	4.700	6.000	575	.619
1985	Anuário Abiquim 1986	678	.000	8.578	5.603	530	.000
1990	Anuário Abiquim 1991	709	.500	9.186	4.206	545	.820
1995	Anuário Abiquim 1996	670	.000	9.000	10.030	567.600	
2000	Anuário Abiquim 2001	775	.500	9.000	4.201	600.600	
2005	Anuário Abiquim 2006	907	.500	9.400	5.760	629	.000
2010	Anuário Abiquim 2011	495.000	456.250	10.000	5.760	621	.000
2011	Anuário Abiquim 2012	495.000	456.250	10.000	5.760	621	.000
2012	Anuário Abiquim 2013	495.000	456.250	10.000	5.760	621	.000
2013	Anuário Abiquim 2014	495.000	456.250	10.000	5.760	621	.000

Fontes: Abiquim.

Tabela 53: Capacidade Instalada de Ácido Nítrico por UF em toneladas

Ano	Fonte	BA	RJ	SP
1975	Anuário Abiquim 1979	0	1.000	416.800
1980	Anuário Abiquim 1982	0	0	407.000
1984	Anuário Abiquim 1985	29.700	0	371.238
1985	Anuário Abiquim 1986	62.700	0	431.000
1990	Anuário Abiquim 1991	33.000	0	451.710
1995	Anuário Abiquim 1996	33.000	0	462.600
2000	Anuário Abiquim 2001	36.300	0	497.580
2005	Anuário Abiquim 2006	36.300	0	596.000
2010	Anuário Abiquim 2011	36.300	0	622.100
2011	Anuário Abiquim 2012	36.300	0	625.360
2012	Anuário Abiquim 2013	36.300	0	618.900
2013	Anuário Abiquim 2014	36.300	0	618.900

Fontes: Abiquim.

ANEXO G - Consumo Não Energético de Combustíveis

Tabela 54: Consumo Não Energético de Combustíveis em Outros Setores que não Matéria-prima da Indústria Química (ktep)

Ano	Álcool Anidro	Álcool Hidratado	Lubrificantes ²⁹	Outros Não Energéticos de Petróleo	Solventes
1970	15,22	185,93	=	1.201,77	-
1971	17,75	138,48	-	1.173,62	-
1972	16,23	137,02	-	1.238,57	-
1973	18,26	117,66	-	1.238,57	-
1974	27,39	149,61	-	2.002,12	-
1975	26,88	153,49	-	2.118,99	-
1976	14,71	138,96	-	2.267,92	-
1977	46,16	154,94	-	2.457,26	-
1978	24,85	155,42	-	2.976,05	-
1979	12,68	152,52	-	3.786,67	_
1980	84,20	154,94	-	3.181,99	_
1981	25,87	174,31	-	2.718,84	_
1982	7,61	183,02	-	2.934,74	_
1983	19,78	348,61	_	2.505,53	_
1984	17,75	316,66	_	2.617,73	_
1985	60,36	334,57	147,92	1.098,92	234,75
	47,68	321,98	146,31	821,81	188,87
1986		•			
1987	39,06	303,58	130,15	731,39	203,40
1988	25,87	300,68	123,86	1.083,65	210,53
1989	40,58	317,63	132,67	1.203,02	228,42
1990	30,43	435,77	139,42	1.079,07	222,74
1991	-	333,12	134,08	1.057,40	309,14
1992	-	337,96	111,47	886,79	305,18
1993	60,87	372,82	122,69	946,32	279,81
1994	63,40	447,87	127,85	879,68	355,12
1995	60,36	520,50	134,79	855,78	280,61
1996	76,59	472,08	142,45	1.073,39	305,18
1997	68,48	431,41	149,57	1.177,40	372,56
1998	119,20	457,07	146,63	1.260,41	354,55
1999	136,95	444,00	152,56	1.443,63	425,48
2000	115,65	489,03	164,37	1.477,93	423,92
2001	66,45	574,73	147,65	1.114,83	441,10
2002	43,52	404,78	184,70	1.322,14	553,52
2003	68,49	367,40	163,41	1.174,80	627,92
2004	74,76	441,15	167,69	1.198,83	720,08
2005	69,86	270,25	171,14	1.178,54	1.005,38
2006	117,48	469,20	150,22	1.444,47	1.070,75
2007	151,99	203,12	178,35	1.397,22	622,46
2008	324,99	465,58	227,43	2.213,43	650,96
2009	301,27	424,45	176,09	2.335,23	501,40
2010	148,83	438,38	216,03	3.158,37	455,98
2011	94,32	425,19	242,21	3.412,00	451,44
2012	99,27	481,44	221,23	3.182,99	461,04
2012	133,96	506,84	250,40	3.483,09	422,62
2013	122,39	460,52	216,43	3.481,75	460,74

Fontes: Elaboração própria a partir de MME e MCTI.

 $^{^{29}}$ O consumo de lubrificantes apresentado na tabela corresponde a 20% do publicado nas planilhas do BEN, assumindo que apenas essa fração é responsável por emissões de CO_2 .